

User’s Manual

2 LightningChart® .NET User’s Manual, rev. 10.5

Copyright LightningChart Ltd 2009-2023 3

About this document

This document is a brief User’s Manual, reference of LightningChart® .NET. Only essential key features are

explained. Hundreds of classes, properties or methods are not described in this document. Run the provided

Interactive Examples demo application to get a quick preview of some LightningChart features. The source

code of included demo examples helps understand how to use LightningChart components in code.

All code examples in this document are written in C# language. Also, all the demo examples can be

extracted from Interactive Examples as a Visual Studio project to preview their source code.

User Manuals in other languages are available in LightningChart .NET Resources web page

(https://lightningchart.com/lightningchart-net-resources/).

Also remember, don’t hesitate to contact support (support@lightningchart.com) if you have any

questions!

Applies to LightningChart .NET, v.10.5

Copyright LightningChart Ltd 2009-2023. All rights reserved.

LightningChart is registered trademark by LightningChart Ltd.

https://lightningchart.com

https://lightningchart.com/lightningchart-net-resources/
mailto:support@lightningchart.com
http://www.lightningchart.com/

4 LightningChart® .NET User’s Manual, rev. 10.5

Contents
1. Overview .. 19

1.1 Chart editions .. 19

1.2 Components .. 20

1.3 Namespaces ... 22

2. Installation ... 23
2.1 System requirements .. 23

2.2 .NET compatibility ... 23

2.3 Run the setup wizard ... 23

2.4 Adding LightningChart components manually to Visual Studio Toolbox .. 24

2.5 Configuring Visual Studio 2010-2022 help manually... 24

 Visual Studio 2010 ... 25

 Visual Studio 2012-2022 .. 25

2.6 Code parameters and tips by Visual Studio IntelliSense ... 26

2.7 Selecting target framework ... 27

3. Dev Center ... 28
3.1 Opening Interactive Examples ... 29

3.2 User data statistics .. 31

4. License management ... 32
4.1 Adding license .. 32

4.2 Removing a license .. 34

4.3 Updating a license ... 35

4.4 Extracting Deployment Key ... 36

4.5 Applying Deployment Key in an application .. 36

4.6 Running with Deployment Key on development computer .. 39

4.7 Running with debugger ... 39

4.8 Trial period .. 39

4.9 Floating licenses .. 39

5. LightningChart component .. 40
5.1 Using LightningChart® .NET libraries ... 40

5.2 Creating chart in code ... 41

5.3 Adding from toolbox into Windows Forms project ... 42

 Properties .. 42

 Event handlers ... 42

 Best practices conserning version updates ... 42

5.4 Adding from toolbox into WPF project ... 43

 Properties .. 43

Copyright LightningChart Ltd 2009-2023 5

 Event handlers ... 43

5.5 Adding into Blend WPF project ... 44

 Best practices conserning version updates ... 45

 Preventing blurring of the chart .. 45

5.6 Creating UWP projects .. 46

 Creating a UWP application ... 46

 UWP troubleshooting .. 49

5.7 Object model ... 50

 Differences between Windows forms, WPF and UWP .. 51

5.8 LightningChart Views ... 51

5.9 View and zooming area definitions ... 51

5.10 Setting background fill ... 53

 Setting transparent background .. 55

5.11 Configuring appearance / performance settings .. 56

5.12 DPI handling ... 59

 DpiHelper class .. 60

5.13 Anti-Aliasing ... 60

 Enabling Anti-Aliasing .. 60

 DirectX11 Anti-Aliasing .. 61

6. ViewXY ... 62
6.1 Axis layout options .. 65

 Setting how axes are placed .. 65

6.1.1.1 X-axis automatic placement .. 65

6.1.1.2 Y-axis automatic placement .. 67

 Graph segments and Y axes placement in them ... 70

6.1.2.1 Layered .. 70

6.1.2.2 Stacked .. 70

6.1.2.3 Segmented ... 71

 Axis grid strips .. 72

 Limit Y-value to stack segment .. 74

 Other AxisLayout options .. 75

6.2 Y axes ... 75

 AxisY class properties .. 76

 Tick value labels formatting ... 76

 Value type .. 77

6 LightningChart® .NET User’s Manual, rev. 10.5

 Range setting ... 78

 Restoring range.. 78

 Divisions ... 78

 Grid .. 79

 Custom ticks .. 80

 Event based axis value formatting... 81

 Reversed X and Y axis .. 82

 Logarithmic axes .. 82

6.2.11.1 Exponential presentation for 10 base ... 83

6.2.11.2 Natural logarithm .. 84

 Converting between axis values and screen coordinates ... 84

 MiniScale ... 85

 Axis end point labels .. 85

6.3 X axis .. 86

 Real-time monitoring scrolling .. 86

6.3.1.1 None .. 87

6.3.1.2 Stepping ... 87

6.3.1.3 Scrolling ... 87

6.3.1.4 Sweeping ... 89

6.3.1.5 Triggering ... 90

 Scale breaks ... 91

6.4 Margins .. 93

6.5 ViewXY series, general ... 95

 Automatic series title placement .. 95

6.6 PointLineSeries .. 95

 Line style .. 96

 Points style... 96

 Coloring points individually ... 97

 Adding points ... 97

 Adding points, alternative way .. 98

6.7 LiteLineSeries ... 98

6.8 SampleDataSeries .. 99

 Y precision.. 100

 Adding points ... 100

Copyright LightningChart Ltd 2009-2023 7

6.9 SampleDataBlockSeries ... 100

6.10 DigitalLineSeries .. 102

6.11 FreeformPointLineSeries ... 103

6.12 LiteFreeformLineSeries .. 104

6.13 Which line series should be used? .. 105

6.14 Advanced line coloring of line series ... 107

 Y-value based coloring of line and fill with value-range palette ... 107

 Custom shaping and coloring with CustomLinePointColoringAndShaping event 108

6.15 Polynomial regression ... 109

6.16 High-lowSeries ... 109

 Fill, line and point styles .. 110

 Limits.. 110

 Coloring by value-range palette .. 111

 Adding data .. 112

6.17 AreaSeries .. 113

 Adding data .. 113

6.18 BarSeries .. 114

6.19 StockSeries ... 117

 Setting data to StockSeries .. 118

 Setting X axis to date display ... 119

 Custom formatting of appearance .. 119

 Applying Scale breaks .. 120

6.20 PolygonSeries .. 120

 Setting data to a Polygon ... 120

 Enabling complex / intersecting fills .. 121

6.21 LineCollections ... 121

 Setting data to a LineCollection ... 122

 Solving individual segments .. 122

6.22 IntensityGridSeries .. 123

 Setting intensity grid data ... 125

 Creating intensity grid data from bitmap file .. 126

 Fill styles .. 127

 Rendering as pixel map.. 127

 ValueRangePalette .. 128

8 LightningChart® .NET User’s Manual, rev. 10.5

 Wireframe .. 129

 Contour lines ... 129

 Contour line labels ... 131

6.23 IntensityMeshSeries .. 131

 Setting intensity mesh data, when geometry changes ... 133

 Setting intensity mesh data, when geometry does not change .. 133

6.23.2.1 Creating the series and its geometry ... 134

6.23.2.2 Updating the values periodically ... 134

6.24 Bands ... 134

6.25 Constant lines .. 135

6.26 Annotations ... 136

 Controlling target and location.. 137

 Using mouse to move, rotate and resize ... 138

 Adjusting appearance .. 139

 Size settings ... 139

 Keeping text area visible .. 139

 Displaying annotation over axes.. 139

 Clipping inside graph ... 140

 Controlling the Z order .. 140

 LayerGrouping performance optimization .. 140

 Converting between axis values and screen coordinates ... 141

6.27 Legend box... 142

 Hiding / showing a series from legend box ... 143

 Showing series in the legend box .. 143

 Selecting in which graph segment to show a legend box ... 143

 Modifying check boxes .. 143

 Hiding icons ... 143

 Modifying intensity series palette scales .. 144

 Controlling positions .. 144

 Allocating space for legend boxes between graph segments ... 145

 Alignment of legend boxes in segment gap .. 146

 Horizontal alignment of several legend boxes sharing the same margin 146

 Resizing and moving legend boxes .. 147

 Legend box events ... 147

Copyright LightningChart Ltd 2009-2023 9

6.28 Zooming and panning .. 148

 Zooming with touch screen ... 149

 Panning with touch screen .. 149

 Left mouse button action .. 149

 Right mouse button action .. 149

 RightToLeftZoomAction ... 150

 Zooming with mouse button ... 150

6.28.6.1 Zoom in/out by clicking ... 150

6.28.6.2 Zooming with mouse cursor options ... 151

 ... 151

6.28.6.3 Zoom in with rectangle .. 153

6.28.6.4 Configuring zoom out rectangle .. 153

 Zooming with mouse wheel .. 153

 Zooming and panning with device wheel over axis ... 154

 Panning with mouse button .. 154

 Enabling/disabling Ctrl, Shift and Alt ... 154

 Zoom in/out with code .. 154

 Zooming an axis by code ... 155

 Rectangle zooming about a configurable origin .. 155

 Linking Y axes zoom with same units .. 155

 Automatic Y fit ... 156

 Aspect ratio .. 157

 Excluding specific X or Y axes from zooming and panning operations 157

6.29 DataBreaking by NaN or other value ... 158

6.30 ClipAreas .. 160

6.31 Maps .. 161

6.32 Vector maps ... 162

 Selecting active map .. 162

 Aspect ratio .. 163

 Layers and their appearance settings .. 164

5.25.3.1 Setting individual fill and border style for each layer item ... 165

 Mouse interactivity .. 166

 Background photos .. 167

 Combining other series with maps .. 168

10 LightningChart® .NET User’s Manual, rev. 10.5

 Importing maps from ESRI shape file data .. 170

6.32.7.1 Programming interface for importing shp data .. 170

6.32.7.2 Dialogs ... 171

6.32.7.2.1 Shapefile Selection Dialog ... 171

6.32.7.2.2 Select Record Encoding and Invalid Name Fields .. 172

6.32.7.2.3 Layer data selection dialog .. 173

6.32.7.2.4 Item filter ... 175

 Importing and replacing map layers .. 175

6.33 Tile maps .. 177

 HERE ... 178

6.34 StencilAreas ... 179

 AdditiveAreas .. 180

 SubstractiveAreas .. 181

 Multiple StencilAreas ... 182

6.35 Data cursors ... 182

6.36 LineSeriesCursors .. 184

 Solving the data values in the position of LineSeriesCursor .. 186

6.36.1.1 Accurate method, solving Y value by X value using data points array 186

6.36.1.2 Coarse method, solving Y screen coordinate by X coordinate using data points array 186

 Advanced LineSeriesCursor features ... 187

 Solving the data values from FreeformPointLineSeries .. 188

6.37 EventMarkers .. 189

 Chart event markers .. 190

 Line series event markers .. 191

6.38 Persistent series rendering layers ... 192

 Creating the layer .. 193

 Clearing the layer ... 194

 Adjusting layer alpha ... 194

 Rendering data into the layer .. 194

 Disposing the layer .. 195

 Anti-aliasing data in the layer .. 195

 Getting list of layers ... 195

 Some layer limitations to be aware of... 195

6.39 Persistent series rendering intensity layers .. 196

Copyright LightningChart Ltd 2009-2023 11

 Creating the layer .. 197

 Clearing the layer ... 197

 Changing palette colors ... 197

 Adjusting the intensity effect of new trace and decay of old traces 197

 Rendering data into the layer .. 197

 Disposing the layer .. 198

 Anti-aliasing data in the layer .. 198

 Getting list of layers ... 198

6.40 Custom controls – Zoom bar ... 198

6.41 Custom controls – Violin plot .. 199

7. View3D ... 201
7.1 3D model and dimensions ... 202

 World coordinates ... 202

7.2 Walls .. 203

7.3 FrameBox ... 204

7.4 Camera... 204

 Predefined cameras ... 207

 Camera orientation mode ... 207

7.5 Lights .. 207

 Directional light ... 208

 Point of light .. 208

 Lights and materials ... 208

 Predefined lighting schemes ... 209

7.6 Axes ... 209

 Location ... 210

 Orientation .. 211

 CornerAlignment ... 211

7.7 Margins .. 212

7.8 3D series, general .. 212

7.9 PointLineSeries3D .. 213

 Point styles... 213

 Line styles .. 215

 Adding points ... 215

7.9.3.1 Points ... 216

7.9.3.2 PointsCompact ... 216

12 LightningChart® .NET User’s Manual, rev. 10.5

7.9.3.3 PointsCompactColored .. 217

 Coloring points individually ... 218

 Setting points sizes individually ... 218

 Multi-coloring line ... 219

 Displaying millions of scatter points .. 219

7.10 SurfaceGridSeries3D .. 221

 Setting surface grid data .. 222

 Creating surface from bitmap file .. 223

 Fill styles .. 223

 Contour palette ... 225

 Wireframe mesh .. 226

7.10.5.1 Some notes when using wireframe simultaneously with fill ... 228

 Contour lines ... 229

 Fadeaway ... 230

 Scrolling surface data .. 230

 Handling transparency ... 232

7.11 SurfaceMeshSeries3D .. 233

 Setting surface mesh data ... 234

7.12 WaterfallSeries3D .. 235

7.13 BarSeries3D ... 236

 Bars grouping ... 236

 Bar styles .. 239

 Setting bar series data ... 240

 Showing bars horizontally ... 241

7.14 MeshModels .. 242

 Loading a model .. 243

 Positioning, scaling and rotating the model .. 243

 Enabling fill and wireframe .. 243

 Custom-coloring fill.. 244

 Custom-coloring wireframe ... 245

 Reverse vertices winding order ... 245

 Shade mode ... 245

 MeshModel rendering order ... 246

 Constructing MeshModel programmatically from vertices .. 246

Copyright LightningChart Ltd 2009-2023 13

7.14.9.1 Updating the bitmap fill efficiently .. 247

 Tracing the model with mouse .. 248

7.15 VolumeModels .. 249

 Loading data .. 249

 Properties .. 249

 Ray Function .. 251

 Threshold ... 253

 Color clipping ... 254

 Slice Range ... 255

 Sampling Rate Options .. 256

 Smoothness ... 257

 EmptySpaceSkipping .. 258

 Opacity ... 259

 Brightness and Darkness ... 259

7.16 Rectangle3D objects .. 260

7.17 Polygon3D objects ... 261

7.18 Data cursor .. 263

7.19 Zooming, panning and rotating ... 265

 Mouse wheel zooming .. 266

 Box zooming .. 266

 ZoomPadding ... 267

 ZoomToDataAndLabels .. 268

 Rotating and panning .. 269

 Zooming with touch screen ... 269

 Panning with touch screen .. 269

 Using mouse wheel over an axis ... 269

 Zooming, rotating and panning by code.. 269

7.20 Legend boxes ... 270

 Hiding surface series palette scales ... 270

 Positioning legend boxes in View3D .. 271

7.21 Clipping objects within axis ranges .. 272

7.22 Annotation3D .. 273

8. Coordinate system converters .. 274
8.1 SphericalCartesian3D... 274

14 LightningChart® .NET User’s Manual, rev. 10.5

 Converting from spherical to cartesian ... 275

 Converting from cartesian to spherical ... 275

8.2 CylindricalCartesian3D ... 276

 Converting from cylindrical to cartesian ... 277

 Converting from cartesian to cylindrical ... 277

9. ViewPie3D .. 278
9.1 Properties .. 279

9.2 Pie slices ... 279

9.3 Setting data by code .. 280

9.4 Viewing pie chart in 2D .. 281

10. ViewPolar ... 282
10.1 Axes ... 283

 Reversed axes .. 284

 Setting rotation angles of the scales ... 285

 Setting divisions ... 286

10.2 Margins .. 286

10.3 Legend boxes ... 288

 Hiding palette scales .. 288

 Legend box positioning in ViewPolar .. 289

10.4 PointLineSeriesPolar .. 290

 Setting data .. 290

 Palette coloring .. 291

 Custom shaping and coloring with CustomLinePointColoringAndShaping event 292

10.5 AreaSeries .. 292

 Setting data .. 292

10.6 Sectors ... 293

10.7 Annotations ... 293

10.8 Markers .. 294

10.9 Data cursor .. 295

10.10 Zooming and panning .. 297

 Zooming operations and methods .. 297

10.11 Data clipping in ViewPolar ... 299

10.12 Custom controls – Half Donut ... 300

 Adding data .. 301

 Configuring Half Donut charts ... 301

Copyright LightningChart Ltd 2009-2023 15

 HalfDonutControlPanel ... 302

11. ViewSmith .. 303
11.1 Axis... 303

11.2 Margins .. 307

11.3 Legend boxes ... 308

11.4 PointLineSeries .. 308

11.5 Setting data.. 309

11.6 Annotations ... 309

11.7 Markers .. 310

11.8 Data cursor .. 310

11.9 Zooming and panning .. 311

12. Color themes ... 312
12.1 Custom themes .. 312

13. Scrollbars ... 313
13.1 Scrollbar properties ... 313

13.2 Scrollbars with decimals or negative values .. 314

14. Export and printing .. 316
 Bitmap image export ... 316

 Vector image export .. 316

 Copy to clipboard... 316

 Capturing to byte array ... 317

 Setting output stream for continuous frame writing .. 317

 Printing .. 318

15. LightningChart performance ... 319
15.1 Selecting the correct API edition ... 319

15.2 Set the rendering options correctly ... 319

15.3 Updating chart data or properties ... 319

15.4 Line series tips ... 321

15.5 Intensity series tips .. 321

15.6 3D Orthographic view tips ... 321

15.7 3D surface series tips ... 322

15.8 Maps tips ... 322

15.9 Hardware ... 322

16. LightningChart notifications, error and exception handling ... 323
17. ChartManager component .. 324

17.1 Chart interoperation, drag-drop .. 324

17.2 Memory management enhancement ... 324

18. LightningChart® Trader .. 325

16 LightningChart® .NET User’s Manual, rev. 10.5

18.1 Basic usage .. 325

 Creating TradingChart ... 325

 Using TradingChart in WinForms application .. 326

 Deploying TradingChart ... 326

18.2 Configuring user interface ... 327

 Setting color-theme ... 327

 Setting price chart type ... 328

 UI components .. 328

18.3 Using internal LightningChart control ... 330

18.4 Adding trading data ... 331

 Data provider ... 331

 From file ... 332

 Custom data provider .. 333

 Adjusting time range ... 334

18.5 Data cursor .. 335

18.6 Data packing .. 336

18.7 Technical indicators ... 336

 Adding indicators ... 336

 Removing indicators .. 337

 Indicator types and properties .. 337

 List of available indicators ... 338

18.8 Drawing tools ... 342

 Adding drawing tools ... 342

 Removing drawing tools .. 343

 List of Drawing tools .. 344

18.9 TradingChart troubleshooting ... 352

 Error list ... 352

 Frequently asked questions ... 355

19. SignalGenerator component ... 356
19.1 Sampling frequency, Output interval and Factor .. 356

19.2 Sine waveforms ... 357

19.3 Square waveforms ... 358

19.4 Triangle waveforms ... 358

19.5 Noise waveforms ... 359

19.6 Frequency sweeps ... 359

Copyright LightningChart Ltd 2009-2023 17

19.7 Amplitude sweeps ... 360

19.8 Starting and stopping .. 360

19.9 Multi-channel generator with master-slave configuration ... 360

19.10 Output data stream ... 361

20. SignalReader component .. 362
20.1 Key properties ... 362

20.2 Opening file quickly for playback .. 362

21. AudioInput component ... 364
21.1 Properties .. 364

21.2 Methods .. 364

21.3 Events .. 365

21.4 Usage (WinForms) ... 365

 Creation ... 365

 Event handling ... 365

 Configuring .. 366

 Starting .. 366

 Stopping ... 367

21.5 Usage (WPF) .. 367

 Creation ... 367

22. AudioOutput component .. 368
22.1 Properties .. 368

23. SpectrumCalculator component ... 369
24. Signal filters ... 371
25. Headless mode .. 373

 Headless Rendering ... 373

25.1.1.1 Additional initialization options ... 373

25.1.1.2 Capturing images ... 374

 Limitations and Requirements .. 375

25.1.2.1 Threads .. 375

25.1.2.2 Chart Update ... 375

25.1.2.3 Engine support ... 375

25.1.2.4 Licensing .. 375

 Example solution ... 376

26. Using Windows Forms chart in WPF application ... 378
26.1 How about using LightningChart Windows Forms controls in WPF? .. 378

26.2 Should I use Arction.WinForms.LightningChart in WPF? .. 378

27. Using LightningChart in C++ applications .. 381

18 LightningChart® .NET User’s Manual, rev. 10.5

27.1 Install required C++/CLR packages .. 381

27.2 Setting Visual Studio project ... 382

27.3 Creating LightningChart application in C++ project ... 384

28. Dispose pattern ... 387
28.1 Chart disposing .. 387

28.2 Disposing objects ... 387

29. Object model notes ... 388
29.1 Sharing objects between other objects ... 388

30. Deployment / distribution of LightningChart assemblies.. 390
30.1 Referenced assemblies .. 390

30.2 License key ... 391

30.3 Obfuscating application code .. 391

30.4 Obfuscating LightningChart code .. 391

30.5 XML files of LightningChart assemblies ... 392

31. Troubleshooting .. 393
31.1 Updating from older version ... 393

31.2 Web support .. 394

31.3 Running in Virtual Machine platforms .. 394

32. Credits .. 395
32.1 Intel Math Kernel library ... 395

32.2 Open-source projects .. 395

Copyright LightningChart Ltd 2009-2023 19

1. Overview

LightningChart® .NET SDK is an add-on to Microsoft Visual Studio, consisting of data visualization related

software components and tool classes for WPF (Windows Presentation Foundation), UWP (Universal

Windows Platform) and Windows Forms .NET platforms.

LightningChart components are delivered for serious scientific, engineering, measurement and trading

solutions, execution performance and very advanced features in special focus.

LightningChart components use low-level DirectX11 and DirectX9 GPU acceleration instead of slower

GDI/GDI+ or WPF Graphics APIs. LightningChart has fallback to DirectX11/DirectX10 WARP software

rendering when GPU is not accessible, such as in some virtual machine platforms.

1.1 Chart editions

For WPF, LightningChart component is available in various binding level editions, to balance between

different performance and MVVM (Model - View - ViewModel) bindability needs. UWP chart is based on

the bindable WPF version, providing similar performance, binding and MVVM capabilities.

Chart edition Properties
binding

Series data
binding

Per-data-point
binding

Performance

WPF (non-bindable) No No No Excellent

WPF (bindable) Yes Yes No Very good

UWP (bindable) Yes Yes No Very good

WinForms No No No Excellent
Table 1-1. Bindability and performance matrix.

• For best performance in WPF and multithreading benefits, select non-bindable chart.

• For good tradeoff between WPF bindability and performance, select bindable chart. Bindable

also supports MVVM design pattern.

Bindable chart API is very similar to LightningChart v.6's WPF chart but comes with extended properties

binding which also covers objects created in collections.

Different chart editions can be used in the same application. It's possible to create basic charts with

bindable chart and bind various properties while using the non-bindable chart for performance-critical

tasks. The collection properties of bindable charts (such as ViewXY axes, 3D lights) are empty by default

which supports XAML editor in full. In Non-bindable and WinForms collections are prefilled with default

items.

Per-data-point binding is supported only in fully-bindable WPF, which is available in the source code

ONLY: Source code client can build from there. 8.5 is the last version officially supporting per-data-point-

binding feature.

Note! Non-Bindable WPF chart is not intended to be configured in XAML at all. Use it in code-behind.

20 LightningChart® .NET User’s Manual, rev. 10.5

1.2 Components

Components that don’t have an UI, are marked with X.

Figure 1-1. On the left, WPF toolbox components. On the right, WinForms toolbox components

Charting assembly

LightningChart: The chart component. Visualizes data in various presentations.

In top corner of the icon, B = Bindable WPF chart

UWP chart, available in UWP applications.

ChartManager: Controls interoperation of multiple charts components and real-time

measurement memory management. See chapter 17.

TradingCharts assembly

TradingChart: Charting control made for Trading and Finance apps. Trader library is built on

top of LightningChart API. See chapter 18.

Copyright LightningChart Ltd 2009-2023 21

SignalTools assembly

Components that don’t have an UI, are marked with X.

AudioInput Reads waveform audio stream from a sound device. Line-in or microphone-in

connectors are typical options available in a sound device. The real-time stream can be

forwarded to other controls. See chapter 21.

AudioOutput Plays back real-time data stream through the sound device, to speakers or line-

output for example. Doesn’t have to be an audio stream, any sampled real-time signal can

be used. See chapter 22.

SignalGenerator Generates signal from multiple configurable waveform components. See

chapter 19.

SignalReader Reads waveform data from a signal file, such as PCM formatted WAV. See

chapter 20.

SpectrumCalculator Converts signal data (time domain) to spectrum (frequency domain), by

using FFT (Fast Fourier Transform). Also contains methods for backwards conversion,

frequency domain to time domain. See chapter 23.

22 LightningChart® .NET User’s Manual, rev. 10.5

1.3 Namespaces

Table 1-2. Assembly names and namespaces of LightningChart® .NET editions.

UWP uses several namespaces in XML. The following are the most common ones:

xmlns:lcu="using:Arction.Uwp.ChartingMVVM”

xmlns:viewxy="using:Arction.Uwp.ChartingMVVM.Views.ViewXY”

xmlns:axes="using:Arction.Uwp.ChartingMVVM.Axes”

xmlns:titles="using:Arction.Uwp.ChartingMVVM.Titles”

xmlns:seriesxy="using:Arction.Uwp.ChartingMVVM.SeriesXY”

When using other views than ViewXY, use the respective view and series names (View3D, ViewPolar etc.).

Example of using namespaces in UWP:

<lcu:LightningChart

 ChartName="Line and Bars Chart">

 <lcu:LightningChart.ViewXY>

 <viewxy:ViewXY>

 <viewxy:ViewXY.XAxes>

 <axes:AxisX Maximum="10"/>

 </viewxy:ViewXY.XAxes>

 </viewxy:ViewXY>

 </lcu:LightningChart.ViewXY>

</lcu:LightningChart>

Chart
edition

Assembly name Namespace root XML namespace

WPF (non-
bindable)

Arction.Wpf.Charting.
LightningChart.dll

Arction.Wpf.
Charting

xmlns:lcunb=
"http://schemas.arction.com/

charting/ultimate/"
WPF

(bindable)
Arction.
Wpf.ChartingMVVM.
LightningChart.dll

Arction.Wpf.
ChartingMVVM

xmlns:lcusb=
"http://schemas.arction.com/

ChartingMVVM/ultimate/"

UWP Arction.
Uwp.ChartingMVVM.
LightningChart.dll

Arction.Uwp.
ChartingMVVM

xmlns:lcu=
"using:Arction.Uwp.ChartingMVVM”

WinForms Arction.
WinForms.Charting.
LightningChart.dll

Arction.WinForms.
Charting

N/A

Copyright LightningChart Ltd 2009-2023 23

2. Installation

2.1 System requirements

Check if the computer configuration meets the requirements

• DirectX 9.0c (shader model 3) level graphics adapter or newer, or DirectX11 compatible operating

system for rendering without graphics hardware. DirectX11 compatible graphics hardware

recommended.

• Windows Vista, 7, 8, 10 or 11, as 32 bit or 64 bit, Windows Server 2008 R2 or higher

• Visual Studio 2010-2022 for development, not required for deployment.

• .NET framework v. 4.0 or newer installed

2.2 .NET compatibility

LightningChart is built primary for .NET framework, but is also compatible with the following .NET

versions:

• .NET Core 3.0 and 3.1

• .NET 5

• .NET 6

• .NET 7

• .NET 8

When using the above, Visual Studio may give a warning about installed package using different target,

especially when using NuGet packages. However, this does not prevent the application from working.

In these cases, the warning can be suppressed or just ignored.

Note that LightningChart will not appear in Visual Studio toolbox in .Net Core 3 and .NET 5 – 8 projects.

Therefore, the chart must be created and configured in code.

2.3 Run the setup wizard

Right-click on the LightningChart .NET SDK v10.exe. The setup will install the components into Visual

Studio toolbox. It also installs the help files associated with the toolbox controls. If components or help

install fail, install them manually as instructed in the following sections.

When trialing LightningChart, SetupDownloader.exe is most likely used. This downloads and installs the

SDK, meaning running LightningChart .NET SDK v10.exe explicitly is not required.

24 LightningChart® .NET User’s Manual, rev. 10.5

2.4 Adding LightningChart components manually to Visual Studio Toolbox

WinForms

1. Open Visual studio. Create a new WinForms project. Right-click on Toolbox, select Add Tab and

give name "Arction"

2. Right-click on Arction tab, and select Choose items...

3. In Choose Toolbox items window, Select .NET Framework Components page. Click Browse...

Browse Arction.WinForms.Charting.LightningChart.dll and

Arction.WinForms.SignalProcessing.SignalTools.dll, from the folder the components were

installed on, typically C:\Program Files (x86)\Arction\LightningChart .NET SDK v.10\LibNet4, and

click open. The components can now be found in the toolbox.

WPF

1. Open Visual studio. Create a new WPF project. Right-click on Toolbox, select Add Tab and give

name "Arction"

2. Right-click on Arction tab, and select Choose items...

3. In Choose Toolbox items window, Select WPF Components page. Click Browse...

Browse Arction.Wpf.Charting.LightningChart.dll, Arction.Wpf.ChartingMVVM.LightningChart.dll,

and Arction.Wpf.SignalProcessing.SignalTools.dll, from the folder the components were installed

to, typically C:\Program Files (x86)\Arction\LightningChart .NET SDK v.10\LibNet4, and click

open. The components can be now found in the toolbox.

2.5 Configuring Visual Studio 2010-2022 help manually

This chapter gives the information how to install LightningChart® .NET help content manually. This

information is needed if Visual Studio 2010-2022 does not have any local help content installed. When

installing LightningChart® .NET and there isn’t any local help content installed, LightningChart® .NET’s

help will not install.

These steps allow to view LightningChart® .NET’s help from Visual Studio 2010-2022. Either press F1 on

LightningChart’s classes, properties etc. or use Microsoft Help Viewer to browse the help content.

Copyright LightningChart Ltd 2009-2023 25

 Visual Studio 2010

Follow these steps to manually install LightningChart® .NET help content on Visual Studio 2010:

1. Open Visual Studio 2010.

2. Select Help -> Manage Help Settings.

3. On Help Library Manager, click Settings link.

4. Make sure that I want to use local help is selected.

5. If I want to use local help is selected, click Cancel to go back to Help Library Manager.

Otherwise click OK.

6. Click Install content from disk link.

7. Click Browse button and go to the folder where LightningChart® .NET is installed, by default

the path is C:\Program Files (x86)\Arction\LightningChart .NET SDK v.10\MSHelpViewer.

8. Select HelpContentSetup.msha and click Open button.

9. Click Next button.

10. Next to LightningChart® .NET Help there is Add link. Click it and make sure that Status

column value changes to Update Pending.

11. Click Update button. If Help Library Manager asks if you want to proceed, click Yes button.

Help library update begins.

12. After help library is updated, click Finish button to close Help Library Manager.

 Visual Studio 2012-2022

Follow these steps to manually install LightningChart® .NET help content on Visual Studio 2012-

2022:

1. Open Visual Studio 2012, 2013, 2015, 2017, 2019 or 2022.

2. Select HELP -> Add and Remove Help Content.

3. After Microsoft Help Viewer starts, select Manage Content.

4. Select Disk under Installation source.

5. Click the button with three dots to browse files.

6. Go to the folder where LightningChart® .NET is installed, by default the path is C:\Program

Files (x86)\Arction\LightningChart .NET SDK v.10\MSHelpViewer

7. Select HelpContentSetup.msha and click Open button.

8. Next to LightningChart® .NET Help there is Add link. Click it and make sure that Status

column value changes to Add pending.

26 LightningChart® .NET User’s Manual, rev. 10.5

9. Click Update button. If Help Library Manager asks if you want to continue, click Yes button.

Help library update begins.

10. After help library is updated, Microsoft Help Viewer can be closed.

11. In Visual Studio Menu / Help, select Set Help Preference : Launch in Help Viewer.

Figure 2-2. Setting help preference.

2.6 Code parameters and tips by Visual Studio IntelliSense

IntelliSense may not show code hints when typing LightningChart related code, if the LightningChart.dll

file is referenced from Global Assembly Cache and the controls are not installed by the automatic

toolbox installer. Remove the LightningChart.dll file from References list of the project. Then add it again

by browsing from the install directory (typically C:\Program files (x86)\Arction\LightningChart .NET

SDK v.10\LibNet4).

Figure 2-1. Adding LightningChart help

Copyright LightningChart Ltd 2009-2023 27

2.7 Selecting target framework

In C# project, the framework selection can be made in Project -> Properties -> Application -> Target

framework.

Figure 2-3. Selecting target framework in C# project.

In Visual Basic project, the framework can be selected in Project -> Options -> Compile -> Advanced

compile options -> Target framework.

 Figure 2-4. Selecting target framework in Visual Basic project.

Select .NET Framework 4 Client Profile or version .NET Framework 4 onwards. .NET Framework 4.5 or

above recommended.

The LightningChart® .NET SDK controls will appear in the Visual Studio toolbox only if the correct .NET

framework is selected.

28 LightningChart® .NET User’s Manual, rev. 10.5

3. Dev Center

From LightningChart .NET version 8.5 onwards, LightningChart .NET Dev Center is automatically

installed when running LightningChart .NET SDK v10.exe setup. Dev Center is a new application, which

allows quick access to LightningChart® .NET features and resources. The following tasks can be

accomplished with few mouse-clicks.

- Open Interactive Examples demo application

- Open documentation resources such as tutorials and the User’s Manual

- Contact support via e-mail

- Automatically gather application information, which can be sent to technical support

This often helps the support team to solve the issue faster

- Quick link to send feedback to manufacturer

- Check license status and open License Manager to update or activate licenses

- Purchase new licenses

Figure 3-1. The main window of Dev Center containing buttons for different actions.

Copyright LightningChart Ltd 2009-2023 29

3.1 Opening Interactive Examples

LightningChart Interactive Examples is one of the main sources of information when learning how to

use LightningChart components and features. Interactive Examples can be run by clicking the “Open

Interactive Examples” -image in Dev Center or via a shortcut in Start-menu. Interactive Examples has a

large number of examples grouped in various categories and a search bar to search for specific

examples. Furthermore, individual examples have Properties -tab allowing modifying the chart

properties on the fly.

Installing LightningChart .NET SDK automatically adds the source codes of all the demo examples to the

computer. Clicking “Open example VS project” -section in Interactive Examples allows opening and

modifying the current example as a standalone project in Visual Studio.

Figure 3-2. Tile view of Interactive Examples allows browsing examples by categories.

30 LightningChart® .NET User’s Manual, rev. 10.5

Figure 3-3. List view shows all examples without categorization.

Figure 3-4. An example has been opened. It can be extracted as a standalone project via the buttons within the highlighted
area.

Copyright LightningChart Ltd 2009-2023 31

3.2 User data statistics

LightningChart Ltd. collects anonymous user statistics from DevCenter and Interactive Examples to

improve our applications and to provide the best possible user experience in the future. The first time

these applications are run, a user agreement is represented. Regardless of the answer, this option can

be changed any time via DevCenter or Interactive Examples and does not affect the applications or the

charts anyhow. No user statistics from using the LightningChart itself is collected.

Figure 3-5. DevCenter requesting for user agreement to collect anonymous statistics.

32 LightningChart® .NET User’s Manual, rev. 10.5

4. License management

4.1 Adding license

Manage licenses by running the License Manager application from the Dev Center or from Windows

start menu: Programs / Arction / LightningChart .NET SDK / License Manager.

LightningChart components use a license key protection system. The components can be used only with

a valid license. License has information of:

• Enabled features, such as ViewXY, View3D, ViewPie3D, Maps, ViewPolar, ViewSmith, Volume

Rendering, Signal Tools

• WPF / WinForms / UWP / All platforms

• To how many users the license can be activated (1 as standard).

• Subscription expiry date (updates and support ending dates)

• Tech support inclusivity

• Per-developer license or Floating license

• Student license

When dragging a LightningChart component from Toolbox into an application the first time, a license

key is asked in a license manager window. Add the license key at from the received license file by

clicking Install license from file… and browsing the .alf file.

Figure 4-1. License Manager when no license is installed. License file can be added via Install license from file.

Per-developer licenses are activated to LightningChart License Server over internet automatically after

adding the license file.

Copyright LightningChart Ltd 2009-2023 33

Figure 4-2. License Manager window after a license file has been added successfully.

If online activation is not possible due to for example internet connection being not available or the

connection being too slow, the licenses can be activated via e-mail as well. Request offline activation

button becomes available after the respective online action has failed one or two times. Deactivating

the license offline works similarly.

34 LightningChart® .NET User’s Manual, rev. 10.5

Clicking the offline buttons gives on-screen instructions. Follow them to send an e-mail message to

LightningChart licensing team at licensing@lightningchart.com.

LightningChart will provide instructions how to install the license offline. Expect a reply in 2 business

days.

Note! Activation/deactivation over telephone is not available, as the key codes contain thousands of

characters.

Note! From LightningChart v.7.1 onwards, ChartManager component does not need a license key.

Note! From LightningChart v.8.0 onwards, LIC format license keys are not supported. ALF license is

needed. If you haven’t received ALF license, please contact our licensing team.

4.2 Removing a license

License can be removed from the system with Deactivate & uninstall button. Online connection is

required for automatic deactivation. If internet connection is not available, deactivation can be done via

e-mail as instructed in the previous chapter.

After the license has been deactivated, it can be installed on another computer.

Figure 4-3. Offline activation option available on License Manager after the online activation has failed.

mailto:licensing@lightningchart.com

Copyright LightningChart Ltd 2009-2023 35

Figure 4-4. Deactivating and removing a license. If the online deactivation (on the left) fails, offline alternative (on the right)
becomes available.

4.3 Updating a license

After initial installation of license, it can still be updated, for example when subscription period is

extended, it is upgraded to better edition, or when source code is bought etc. NOTE, license is not

automatically updated on user’s machine. Therefore, each user should take action to ensure that

license on developer machine is up-to-date. To do that the old license has to be deactivated and

removed first (see the previous chapter “Removing a license” how to do this). Afterwards obtain the

new license key (.alf file) from the LightningChart’s customer portal. Then install it according to the

instructions on chapter 4.1 “Adding a license”.

36 LightningChart® .NET User’s Manual, rev. 10.5

4.4 Extracting Deployment Key

To be able to run LightningChart applications in computers the software is deployed into, a Deployment

Key has to be applied in code. Deployment Key can be extracted from a license key by pressing Copy

deployment key to Clipboard button.

Figure 4-5. Copying the deployment key to clipboard in License Manager.

4.5 Applying Deployment Key in an application

In code, use static SetDeploymentKey methods for the wanted components. There is no need to set the

key for the components that are not used (i.e. setting key for bindable charts in a non-bindable

application). Call the SetDeploymentKey methods somewhere before the components need to be used.

The best place to call it would be static constructor of the class using the chart, or in the application’s

main class.

For more detailed instruction on deployment, see chapter 30.

Copyright LightningChart Ltd 2009-2023 37

WinForms

Here’s an example how to apply the key at the static constructor method of the Program class that is

created by default for every WinForms application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;

namespace WindowsFormsApplication1
{

 static class Program
 {

static Program()
{

 //Set Deployment Key for LightningChart components
 string deploymentKey = "VMalgCAAO6kO1RgiNIBJABVcG.R..Kikfd...";

 Arction.WinForms.Charting.LightningChart.SetDeploymentKey(deploymentKey);
 Arction.WinForms.SignalProcessing.SignalGenerator.SetDeploymentKey(deploymentKey);
 Arction.WinForms.SignalProcessing.AudioInput.SetDeploymentKey(deploymentKey);
 Arction.WinForms.SignalProcessing.AudioOutput.SetDeploymentKey(deploymentKey);
 Arction.WinForms.SignalProcessing.SpectrumCalculator.SetDeploymentKey(deploymentKey);
 Arction.WinForms.SignalProcessing.SignalReader.SetDeploymentKey(deploymentKey);
 Arction.WinForms.SignalProcessing.FilterRoutines.SetDeploymentKey(deploymentKey);

 Arction.CustomControls.Trader.WinForms.TradingChart.SetDeploymentKey(deploymentKey);

}

 // Rest of the class ...
 }

}

38 LightningChart® .NET User’s Manual, rev. 10.5

WPF

Here’s an example how to apply the key in the beginning of App.xaml.cs, at the static constructor of the

App class.

using System;
using System.Collections.Generic;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Windows;
using Arction.Wpf.SignalProcessing;

namespace WpfApplication1
{
 /// <summary>
 /// Interaction logic for App.xaml
 /// </summary>
 public partial class App : Application
 {

static App()
{
 // Set Deployment Key for LightningChart components
 string deploymentKey = "- DEPLOYMENT KEY FROM LICENSE MANAGER
 GOES HERE-";

 // Setting Deployment Key for bindable chart
 Arction.Wpf.ChartingMVVM.LightningChart
 .SetDeploymentKey(deploymentKey);

 // Setting Deployment Key for non-bindable chart
 Arction.Wpf.Charting.LightningChart
 .SetDeploymentKey(deploymentKey);

 // Setting of deployment key to other LightningChart components
 SignalGenerator.SetDeploymentKey(deploymentKey);
 AudioInput.SetDeploymentKey(deploymentKey);
 AudioOutput.SetDeploymentKey(deploymentKey);
 SpectrumCalculator.SetDeploymentKey(deploymentKey);
 SignalReader.SetDeploymentKey(deploymentKey);
 FilterRoutines.SetDeploymentKey(deploymentKey);

 // Setting Deployment Key for trading chart
 Arction.CustomControls.Trader.WPF.TradingChart
 .SetDeploymentKey(deploymentKey);

}

 }
}

In UWP application, it is possible to use either developer key or deployment key, but not both together.

Use developer key when developing and debugging the app and deployment key when deploying it.

Note! Without setting Deployment Key in the application, LightningChart enters into 30 days trial mode

in the target machine (applies to computers where a Development license key hasn’t been installed).

Copyright LightningChart Ltd 2009-2023 39

4.6 Running with Deployment Key on development computer

When running an application, in which a deployment key has been applied with SetDeploymentKey, on

a computer where a development license has been installed to, the library prioritizes the development

license key. It might lead into user or debugging confusion when deployment key has higher level of

features included (e.g. Gold pack) than locally installed license (e.g. Silver pack). Developer must be aware

of this limitation.

LightningChart Ltd. recommends all licenses to be of same type within the whole team.

4.7 Running with debugger

With Deployment Key set correctly, when running the project from Visual Studio with debugger attached,

and no development license key is found from the system, the chart enters slow rendering mode, max

FPS is ~1, and the chart shows message text over the chart.

Direct developing and debugging with LightningChart without developer license key, is forbidden by

LightningChart EULA.

4.8 Trial period

The trial period is usable for 30 days. After that, a license must be purchased to continue using the

product. All projects built with a trial license will work also after updating to proper license. A trial

version nag message will be shown when running the chart application built with a trial license.

4.9 Floating licenses

Floating licenses can be installed to unlimited count of computers. Number of concurrent developers

has been configured by LightningChart Ltd. Only the purchased count of concurrent users can develop

with LightningChart at same time. After a developer finishes LightningChart development, there’s about

10-15 minutes timeout until another developer can start using it.

Deployment key must be set similarly than with per-developer licenses.

Floating licenses are controlled by LightningChart Licensing Server by default. Continuous internet

connection is required while developing.

Customer-side floating license controller is also available. Development computers connect to a service

running in customer’s organization via local area network. On-line communication with LightningChart

Ltd. or other parties doesn’t take place. With licenses, LightningChart Ltd. provides separate instructions

for installing the controller service and floating licenses.

40 LightningChart® .NET User’s Manual, rev. 10.5

5. LightningChart component

5.1 Using LightningChart® .NET libraries

In order to use LightningChart® .NET components, Arction .dll -files have to be added to references.

These can be found in the installation folder. The following assemblies are required when developing

an application:

Winforms: Arction.WinForms.Charting.LightningChart.dll.

WPF Non-bindable: Arction.Wpf.Charting.LightningChart.dll

 Arction.DirectX.dll

 Arction.RenderingDefinitions.dll

WPF Bindable: Arction.Wpf.ChartingMVVM.LightningChart.dll

 Arction.DirectX.dll

 Arction.RenderingDefinitions.dll

UWP Chart: Arction.Uwp.ChartingMVVM.LightningChart.dll

 Arction.Uwp.RenderingDefinitions.dll

 Arction.Uwp.RenderingEngineBase.dll

If using SignalTools: Arction.WinForms.SignalProcessing.SignalTools.dll or

 Arction.Wpf.SignalProcessing.SignalTools.dll or

 Arction.Uwp.SignalProcessing.SignalTools.dll

If the above references are added, building the project will automatically copy all the required

assemblies to the output folder. Chapter 28 shows what assemblies are needed when deploying a

LightningChart application.

Arction.DirectXFiles.dll is not automatically included as reference, as it is a large file which can increase

the initialization time. It is only needed when there are no correct DirectX assemblies already in the

system. Arction.DirectXInit.dll routines check the existing dlls and loads them when necessary. When

loaded once, it writes the DirectX-dlls into Windows temp folder where LightningChart can access them

in the future, thus making the initialization fast.

We recommend not to include Arction.DirectXFiles.dll as reference, instead, copy it next to your exe.

Copyright LightningChart Ltd 2009-2023 41

5.2 Creating chart in code

LightningChart component can be added by either dragging it from the toolbox or by creating it

completely in code behind. Creating the chart object in code has the advantage of allowing easier

version updates. Furthermore, it can avoid some (de)serialization related issues.

The following demonstrates one way to create a WPF non-bindable chart in code behind (.xaml.cs -file).

using Arction.Wpf.Charting;

namespace ExampleProject

{

 public partial class ExampleApp : Page

 {

 private LightningChart _chart = null;

 public ExampleApp()

 {

 InitializeComponent();

 CreateChart();

 }

 private void CreateChart()

 {

 _chart = new LightningChart();

 // Chart control into the parent container.

 (Content as Grid).Children.Add(_chart);

 // Disable rendering until the whole chart is set up correctly.

 _chart.BeginUpdate();

 // Configure chart here.

 // Allow rendering the chart.

 _chart.EndUpdate();

 }

 }

}

42 LightningChart® .NET User’s Manual, rev. 10.5

5.3 Adding from toolbox into Windows Forms project

Add LightningChart control from the toolbox into the form. The chart appears in the form and its

properties are shown in Properties window.

Figure 5-1. LightningChart control added into Windows Forms designer.

 Properties

The properties can be modified freely. Also, new series and other objects can be inserted in their

collections. Series data points must be given by code.

 Event handlers

Event handlers of the chart main level can be assigned with the property grid. For objects that have

been added to the collections, events handlers must be assigned in code.

 Best practices conserning version updates

Chart property data is serialized in .resx file in the Visual studio project. LightningChart API tends to

change a little bit with version updates which may lead into incompatible serialization for the new

version to exist in the .resx file.

Copyright LightningChart Ltd 2009-2023 43

For easier version updates, it’s strongly recommended to create the chart object, add all series, event

handlers etc. in code. The project then loads correctly and possible errors are shown in the compile

time making it easy to fix them compared to fixing .resx file. With .resx file, some property definitions

may be lost, but in code, they are always specified.

5.4 Adding from toolbox into WPF project

Add LightningChart Bindable WPF control from the toolbox to Window or another container. The chart

appears in the designer and its properties are shown in Properties window. XAML editor shows the

contents and modifications to the chart default properties.

 Properties

The properties can be modified freely, and new series and other objects can be inserted into their

collections. Series data points must be given in code.

 Event handlers

Event handlers of the chart main level can be assigned with the property grid. For objects that have

been added to the collections, events handlers must be assigned in code.

44 LightningChart® .NET User’s Manual, rev. 10.5

Figure 5-2. LightningChart control added into WPF designer.

5.5 Adding into Blend WPF project

In Projects tab, go to References. Right-click and select Add reference… Browse

Arction.WPF.Charting.LightningChart.dll from c:\program files (x86)\Arction\LightningChart .NET SDK

v.10\LibNet4.

Go to Assets tab. Write “Lightning” in the Search box. LightningChart row can be found in the search

results. Drag-drop the object into the WPF window.

Copyright LightningChart Ltd 2009-2023 45

Figure 5-3. LightningChart control added into Blend For Visual Studio 2013 designer.

 Best practices conserning version updates

Chart property data is stored in XAML. New versions may have slightly different property set, which

can cause the LightningChart object not to appear in the designer. Relevant XAML modifications are

then needed. The XAML tags tree may be huge and editing it may be quite difficult.

For easier updates, it’s strongly recommended to create the chart object and set its layout and

alignment relevant properties in designer. Set everything else in code. Alternatively, create the chart

object in code as well.

 Preventing blurring of the chart

This is a common feature of WPF and not related to the chart itself but becomes clearly visible in

accurate rendering of LightningChart.

To prevent the chart to appear blurred, set UseLayoutRounding = True of the control that is parent

to the chart. The chart may still appear blurred in the designer but will look sharp when running the

application. The parent control can be for example Grid, Canvas, DockManager etc.

46 LightningChart® .NET User’s Manual, rev. 10.5

5.6 Creating UWP projects

Using LightningChart in UWP works similarly to bindable WPF chart as it has similar binding and MVVM

capabilities. As with bindable WPF chart, the collection properties of UWP charts (such as ViewXY axes,

3D lights) are empty by default. Windows 10 and Visual Studio 2017 onwards are required to develop

UWP applications with LightningChart. Universal Windows Platform development workload should also

be installed on Visual Studio, including the following:

- Microsoft.NETCore.UniversalWindowsPlatform: 6.2.8 or later (Nuget package).

- Microsoft.Toolkit.Uwp: v 4.0.0 or later, 6.0.0 or later recommended. Note that the latest

toolkits may not be compatible with earlier target versions.

 Creating a UWP application

Follow these steps to create a UWP application utilizing LightningChart:

1. Create a new project with Visual Studio. Select Blank App (Universal Windows).

2. Give the project a name and file location.

3. Set Target and Minimum versions for the project. What versions are available depends on what

SDKs have been installed on the machine. For further information see Microsoft’s documention:

https://developer.microsoft.com/en-us/windows/downloads/sdk-archive/. Version 16299 or

above is recommended. Note that these can be changed later via Project -> Properties.

Figure 5-4. Selecting Target and Minimum versions for UWP.

4. When using Target version 2004 or newer, TypeInfoReflection setting should be disabled. Open the

.csproj project file for instance in a text editor and add the following line to each PropertyGroup

defining a build condition (Debug|x86, Release|x86 etc.):

<EnableTypeInfoReflection>false</EnableTypeInfoReflection>

5. Add LightningChart and SharpDX assemblies to references. By default, these can be found in

C:\Program Files (x86)\Arction\LightningChart .NET SDK v.10\LibUWP. Note that the same UWP

https://docs.microsoft.com/en-us/windows/uwp/updates-and-versions/choose-a-uwp-version

Copyright LightningChart Ltd 2009-2023 47

assemblies work for x86, x64, Arm and Arm64 platforms. The target platform can be changed by

right-clicking the project and selecting Properties -> Build -> Platform target.

 Figure 5-5. UWP assemblies added to the project references.

6. Install Microsoft.Toolkit.Uwp NuGet package to your project. Version 6.0 or newer recommended.

7. UWP requires developer key to be set in the application. Extract the key from LicenseManager via

“Copy UWP developer key to clipboard” button, then set it in App.Xaml.cs file by using

LightningChart.SetUwpDeveloperKey() method.

Figure 5-6. Using LicenseManager to copy UWP developer key
to clipboard.

48 LightningChart® .NET User’s Manual, rev. 10.5

8. It is now possible to create LightningChart components in code or in xaml editor. For example,

creating a UWP chart in code:

using Arction.Uwp.ChartingMVVM;

namespace ExampleProject

{

 public sealed partial class MainPage : Page

 {

 private LightningChart _chart = null;

 public MainPage()

 {

 InitializeComponent();

 CreateChart();

 }

 private void CreateChart()

 {

 _chart = new LightningChart();

 // Chart control into the parent container.

 (Content as Grid).Children.Add(_chart);

 // Disable rendering until the whole chart is set up correctly.

 _chart.BeginUpdate();

 // Configure chart here.

 // Allow rendering the chart.

 _chart.EndUpdate();

 }

 }

}

Figure 5-7. Setting the UWP developer key in App.Xaml.cs file.

Copyright LightningChart Ltd 2009-2023 49

9. Build, deploy and run the application. In case of app not running (for instance due to “Activation of

the Windows Store app…” error), often changing Target and Minimum versions helps.

10. When deploying a UWP application to other machines, deployment key should be applied (see

chapter 4.4). Deployment key cannot be used together with development key. Therefore, remove

setting the developer key before deploying.

 UWP troubleshooting

UWP projects have some known issues. These are often not related to LightningChart but to UWP in

general. Therefore, searching additional information from web is recommended. In any case, don’t hesitate

to contact support (support@lightningchart.com) if you have any questions.

Some known UWP issues:

-Version 1903 not working. Might give error such as Build error MSB4166: Child node "2" exited prematurely

This is a known issue specific to 1903. The best fix is to simply use different target version. Microsoft

recommends targeting version 2004 (build 19041) instead.

-Release build not working.

Try disabling Compile with .NET Native tool chain via project’s Properties -> Build

-Debug build not working

In some UWP versions, for instance version 2004, debug build might not run giving error: Run Error: an

unhandled win32 exceptio occurred in [3088] (number is different for different build). In these cases, make

sure you have added <EnableTypeInfoReflection>false</EnableTypeInfoReflection> line to you csproj file.

Alternatively, try using release build instead.

-Activation of Windows Store App ’App name’ failed.

Try cleaning the solution. Delete bin and obj folders and rebuild as instructed here:

https://docs.microsoft.com/en-us/previous-versions/hh972445(v=vs.140)?redirectedfrom=MSDN

mailto:support@lightningchart.com
https://docs.microsoft.com/en-us/previous-versions/hh972445(v=vs.140)?redirectedfrom=MSDN

50 LightningChart® .NET User’s Manual, rev. 10.5

5.7 Object model

The best way to learn the object model of LightningChart is by using Properties editor of Visual Studio.

Figure 5-8. LightningChart specific properties can be found under Chart category in both Windows Forms and WPF Properties
window. By expanding the nodes, or in WPF creating new objects, a huge set of properties can be seen.

Copyright LightningChart Ltd 2009-2023 51

 Differences between Windows forms, WPF and UWP

The property tree and object model between Windows Forms and WPF are almost identical, regarding

the Chart category. The main differences are:

 Windows Forms WPF UWP
Rendering
options
property

RenderOptions ChartRenderOptions ChartRenderOptions

Background
fill property

Background ChartBackground ChartBackground

Fonts System.Drawing.Font Arction.WPF.LightningChart.
WPFFont

Arction.Uwp.ChartingMVVM.
UwpFont

Colors System.Drawing.Color System.Windows.Media.Color Windows.UI.Color

 Table 5-1. Differences between Windows forms, WPF and UWP.

In the following chapters, Windows Forms property names are referred unless otherwise denoted.

5.8 LightningChart Views

LightningChart has the following main views:

- ViewXY (see chapter 6)

- View3D (see chapter 7)

- ViewPie3D (see chapter 9)

- ViewPolar (see chapter 10)

- ViewSmith (see chapter 11)

The visible view can be changed by setting ActiveView property. The default view is ViewXY.

// Set 3D as the visible view

chart.ActiveView = ActiveView.View3D;

5.9 View and zooming area definitions

LightningChart views contain several various areas determined by the information they hold. The areas

can be seen as two-dimensional rectangles based on the content of the view. These definitions are

52 LightningChart® .NET User’s Manual, rev. 10.5

uniform regardless of the view type. They are used especially in zooming operations to determine

which areas of the chart will be shown.

-ChartArea/ViewArea: The whole area including the chart and the margins.

-MarginRectangle: MarginRectangle (or MarginRect) includes the area inside the margins.

-GraphArea: The area defined by the axis ranges. Contains major and minor grids. The data is drawn in

this area, unless some data values exceed the axis ranges.

-Background area / circle: Is mostly the same as the GraphArea. Contains also the parts of the graph

outside the axis ranges and the grids.

-LabelsArea: The area consisting of the graph and the axis labels. Ignores the data.

-Data: The area containing only the data. Defined by the minimum and the maximum values of the

data.

-DataAndLabelsArea: Data and LabelsArea combined. All data, axes, labels and markers are included.

-Border: A customizable, one-pixel wide rectangle, which indicates the location of the margins. Its

visibility can be changed by disabling/enabling it.

-Margins: Margins are empty spaces around the graph area. Most of the contents of the view are fitted

inside the margins and clipped outside them.

-ZoomPadding: The space left between the margins and another, pre-defined area after a zooming

operation (see chapter 7.19.3). It has no effect in ViewXY.

 Figure 5-9. View and zooming area definitions

Copyright LightningChart Ltd 2009-2023 53

5.10 Setting background fill

All views have a common background fill.

• Use chart.Background in WinForms.

chart.Background.Color = Color.DarkBlue;

• Use chart.ChartBackground in WPF.

chart.ChartBackground.Color = Colors.DarkBlue;

The background fill supports:

• Solid color fills. Set GradientFill = Solid and use Color to define the color.

• Gradient fills, going from Color to GradientColor. Set GradientFill = Linear / Radial /

RadialStretched / Cylindrical. Use GradientDirection to control the fill direction in Linear and

Cylindrical gradients.

chart.ChartBackground.GradientFill = GradientFill.Cylindrical;

chart.ChartBackground.GradientColor = Colors.Black;

chart.ChartBackground.GradientDirection = -45;

• Bitmap fills, with different tiling and stretching options. Bitmap tint and alpha also are

supported to, to make translucent bitmap fills.

Figure 5-10. Setting Background background, underneath ViewXY. GradientFill = Solid, and Color = DimGray.

54 LightningChart® .NET User’s Manual, rev. 10.5

Figure 5-11. Setting Background to gradient cylindrical, under View3D.GradientFill = Cylindrical, Color = Maroon,
GradientColor = Black. GradientDirection = -45 degrees.

Figure 5-12. Setting Background to tiled bitmap fill. Style = Bitmap, a picture set to Bitmap.Image, and Bitmap.Layout
= Tile, under ViewPolar.

Copyright LightningChart Ltd 2009-2023 55

 Setting transparent background

In WPF, the chart can be made appear transparent, so the objects placed underneath the chart will

show through.

Figure 5-13. Transparent background in WPF chart.

Set ChartBackground.Color = #00000000 (Black transparent).

Note! Do NOT set ‘Transparent’ (#00FFFFFF). It won’t show through.

WinForms does not support transparent background of controls.

56 LightningChart® .NET User’s Manual, rev. 10.5

5.11 Configuring appearance / performance settings

ChartRenderOptions (RenderOptions in WinForms) contain properties for configuring appearance and

performance.

Figure 5-14. RenderOptions properties.

DeviceType

// Changing the rendering device in code

chart.ChartRenderOptions.DeviceType = RendererDeviceType.Auto;

 Auto is an alias to AutoPreferD11 option. This is the default setting.

AutoPreferD9 prefers DirectX9 hardware rendering, and automatically selects device in this

order: HW9 -> HW11 -> SW11 -> SW9 based on availability. Falls back to WARP (SW11)

software rendering when hardware is not available.

AutoPreferD11 prefers DirectX11 hardware rendering, and automatically selects device in

this order: HW11 -> HW9 -> SW11 -> SW9 based on availability. Falls back to WARP (SW11)

software rendering when hardware is not available. Use this as a general high-performance

and best appearance setting. Visual appearance is better than with DirectX9 renderer.

HardwareOnlyD9 uses hardware 9 rendering only.

Copyright LightningChart Ltd 2009-2023 57

 HardwareOnlyD11 uses hardware 11 rendering only.

 SoftwareOnlyD11 uses DirectX11 WARP, very fast when compared to DirectX9 reference

 rasterizer, but slower than hardware options)

 SoftwareOnlyD9 uses DirectX9 reference rasterizer (very slow)

None if chart is hidden, or inactive in background, setting DeviceType to None will free

graphics resources to other charts.

GPUPreference

 chart.ChartRenderOptions.GPUPreference = GPUPreference.SystemSetting;

 A selection applicable to machines with dual graphics adapter systems, mainly laptops having

 integrated low-performance Graphics Processing Unit (GPU) in the CPU/chipset, and higher

 performance graphics GPU (e.g. AMD or Nvidia).

SystemSetting uses options selected in the graphics settings of Windows, or AMD or Nvidia

control panel.

PreferHighPerformanceGraphics uses high-performance GPU if it exists in the system. Gives

better performance in general but may lead into higher energy consumption.

PreferLowPowerGraphics uses slower integrated GPU, even if high-performance GPU has

been installed on the system.

By default, PreferHighPerformanceGraphics is the preferred option. Keep it selected to get

the best performance.

FontsQuality

 chart.ChartRenderOptions.FontsQuality = FontsRenderingQuality.High;

 Low gives best performance, the fonts are not anti-aliased. Select font typeface carefully to

 get acceptable appearance.

Mid gives almost similar performance than Low. Has simple anti-aliasing around the fonts. This

 is the default setting.

High gives best appearance but has a significant performance hit.

Note: Transparent background is not applicable for DirectX 11 rendering with High quality

setting. For DirectX9 it works. This is a rendering technology limitation.

58 LightningChart® .NET User’s Manual, rev. 10.5

AntiAliasLevel
 chart.ChartRenderOptions.AntiAliasLevel = 1;

 The overall scene anti-aliasing factor. Availability depends on the hardware. Higher values

 give better appearance, but with reduced performance. Set 0 or 1 to maximize the

 performance. See chapter 5.13 for more information on available anti-aliasing settings.

WaitForVSync

 chart.ChartRenderOptions.WaitForVSync = true;

Recommendation: keep as default value. When enabled, holds rendering until display's next

refresh is taking place (e.g. next multiple of 1/60 s). Only recommended temporarily e.g. when

synchronization with external screen capture application is used to prevent striping, or when

image on the screen in top of the screen is not in sync with bottom of the screen. It may show

as broken waveform data. Significant performance hit when enabled, especially in WPF.

UpdateType

 chart.ChartRenderOptions.UpdateType = ChartUpdateTypes.Sync;

 Sync (default): Chart is updated synchronously. Chart gets updated either after the last

 EndUpdate() call, or when setting a property (or calling a method) causes some changes in the

 Chart. Property change (without BeginUpdate…EndUpdate) leads to immediate new frame

 rendering.

Async: Chart is updated on async fashion. The chart will update as fast as possible after

property changes, but chart will render a new frame at some later point. This might make it

easier to use chart on some cases.

LimitedFrameRate: Frame rate is limited to value specified in FrameRateLimit property. 0 =

unlimited. E.g. if max. 10 refreshes / second is wanted, set 10. This is similar to the Async

option but prevents new frames to be rendered right after first one, thus reducing framerate,

but sparing system resources.

Note! Ensure correct thread handling also in LimitedFrameRate and Async modes. If chart

updates asynchronously, and chart properties are updated at the same time, a conflict may

occur and crash the chart or application.

InvokeRenderingInUIThread

 chart.ChartRenderOptions.InvokeRenderingInUIThread = true;

Copyright LightningChart Ltd 2009-2023 59

 When using a background thread in the application, all UI updates from the thread must go

 through Invoke (Control.Invoke() in WinForms, and Dispatcher.Invoke() in WPF).

The rendering part will use internal Invoke to UI thread, when enabled.

The default value is False, as setting properties and calling methods in a thread-safe way

should also be take care of, even when this property is enabled, to prevent thread collision in

internal states of the chart.

HeadlessMode

 chart.ChartRenderOptions.HeadlessMode = true;

 Setting this to True allows using the chart in a background service, console application or

 other application without user interface. See chapter 25.

5.12 DPI handling

By default, WPF applications are DPI (Dots Per Inch) aware whereas WinForms apps are not. Also, DPIs

are used instead of pixels to measure sizes. LightningChart does not support per-monitor DPI

awareness but does system awareness, meaning that WPF apps are DPI system aware. Default DPI in

WinForms is 72, but it is worth noting that if wpf .dll files are loaded, the value changes to 96.

Howevere, LightningChart will not automatically resize when moved to another screen with different

DPI settings. To enable resizing, AllowDPIChangeInduceWindowsResize property under ChartOptions

needs to be set true. Alternatively, user can register to OnDPIChanged event and change its

allowWindowResize attribute. These have no effect in WinForms.

// Enabling automatic resizing

chart.Options.AllowDPIChangeInduceWindowResize = true;

// Via OnDPIChanged -event

chart.OnDPIChanged += chart_OnDPIChanged;

private void chart_OnDPIChanged(LightningChart chart, float dpix, float dpiy,

ref bool allowWindowResize)

{

 allowWindowResize = true;

}

60 LightningChart® .NET User’s Manual, rev. 10.5

 DpiHelper class

LightningChart has DpiHelper class, which contains helpers on DPI related issues.

DpiAware states if the system process is DPI aware or not. However, it is currently not possible to

distinguish between system aware and per-monitor aware.

bool isDPIAware = DpiHelper.DpiAware;

DpiXFactor/ DpiYFactor is an effective Zoom factor of the system DPI of the screen width/height.

Factor that describes how many real pixels there are per one DPI in X/Y direction.

float dpiXFactor = DpiHelper.DpiXFactor;

DipToPx and PxToDip methods convert DIPs to pixels and vice versa using system DPI settings. They can

convert single points or pixels, or alternatively the size and the position values of a rectangle.

double pixelValue = DpiHelper.DipToPx(dipValue);

5.13 Anti-Aliasing

LightningChart® .NET supports anti-aliased rendering. It can be applied for objects having AntiAliasing-

property. With anti-aliasing, lines etc. can be rendered with smoothened edges, resulting in a more

polished graphical representation, but with a performance cost as it increases the CPU/GPU overhead.

 Enabling Anti-Aliasing

Anti-aliasing can be controlled through AntiAliasing-property, which is set via a boolean value or

LineAntialias-enumeration depending on the related component. For the latter, there currently are

two options available:

LineAntialias.None; No anti-aliasing

LineAntialias.Normal; Anti-aliasing

seriesEventMarker.Symbol.Antialiasing = true;

pointLineSeries.LineStyle.AntiAliasing = LineAntialias.Normal;

Copyright LightningChart Ltd 2009-2023 61

Anti-aliasing is also affected by chart’s AntiAliasLevel. It is a factor defining the applied anti-aliasing

mode based on the selected rendering engine (DirectX9 and DirectX11). Setting anti-aliasing level to 0

or 1 will result into no anti-aliasing to be applied on rendering even if the AntiAliasing-property for the

individual components is set to true or LineAntialias.Normal.

AntiAliasLevel can be set through chart’s rendering options:

// Anti-aliasing factor. Values 0 and 1 result into no anti-aliasing applied.

chart.ChartRenderOptions.AntiAliasLevel = 2;

Without setting the value manually AntiAliasLevel defaults to 4.

 DirectX11 Anti-Aliasing

On DirectX11 there are a couple of common features, which should be taken into account, when

rendering with anti-aliasing:

• Setting AntiAliasLevel overrides the AntiAliasing-property if set to a value greater than 1,

meaning that the rendering will be done using anti-aliasing even if the AntiAliasing-property

has been set to be false or LineAntialias.None. The only exception of this is if

LineOptimization.Hairline is applied (only available with 3D rendering).

• LineAntiAliasType can be used to choose whether alpha-blending (ALAA)- or quadrilateral anti-

aliasing (QLAA) is used:

LineAntiAliasingType.ALAA; Alpha-blending anti-aliasing.

LineAntiAliasingType.QLAA; Quadrilateral anti-aliasing.

chart.ChartRenderOptions.LineAAType2D = LineAntiAliasingType.ALAA;

RasterizerStateDescription’s IsMultisampleEnabled and IsAntialiasedLineEnabled settings also affect

the QLAA and ALAA rendering in following way (only applicable for line rendering):

• If RasterizerStateDescription.IsMultisampleEnabled == true, QLAA is used.

• If RasterizerStateDescription.IsMultisampleEnabled == false, ALAA is used.

• If RasterizerStateDescription.IsAntialiasedLineEnabled == true, ALAA is used, this has only

effect if also RasterizerStateDescription.IsMultisampleEnabled == false.

NOTE! On 3D rendering with DirectX11, all triangle lines are always rendered with anti-aliasing unless

the AntiAliasLevel is set to 0 or 1.

62 LightningChart® .NET User’s Manual, rev. 10.5

6. ViewXY

ViewXY allows presenting various point-line series, area series, high-low series, intensity series, heat

maps, bar series, bands, line series cursors etc. in Cartesian, XY graph format. Series are bound to X and

Y axes, and they are using the value range of the assigned axes.

ViewXY can also show geographical maps, see chapter 6.31.

Figure 6-1. ViewXY object tree.

Copyright LightningChart Ltd 2009-2023 63

Figure 6-2. A quick overview of ViewXY

Graph margins

 Margins are adjusted automatically by default by axis count and their settings. By setting

 ViewXY.AxisLayout.AutoAdjustMargins = False, Margins property applies, which allows the

 margin sizes to be set manually. Set all margins to 0 to make the graph fill the whole view area.

 See chapter 6.4 for further information.

Graph border

 A border is drawn around the graph area, in the location of margins. Border property can be

 used to change its color and visibility as well as to determine if it should be rendered behind

 the series. More about border in chapter 6.4

Background

 Set the background fill with Background (ChartBackground in WPF) property. There are plenty

 of filling options available. See chapter 5.10.

Graph background Background

Y axis

Y axis

title

TitleGraph margins, top

Graph margins,

bottom

Graph margins,

right

Graph margins,

left

X axis X axis title

Y axis

value labels

Legend box
Scrollbar
with 64-bit

value range

Another Y axis

Another X axis

Annotation

64 LightningChart® .NET User’s Manual, rev. 10.5

Graph background

 Set the graph background fill with GraphBackground property. Graph is the area where all

 grids, series, series cursors, event markers etc. are rendered.

 chart.ViewXY.GraphBackground.Color = Colors.DarkBlue;

Title

 This is the main title for the chart. Set the text, shadow, color, text border, rotation, font,

 alignment etc. with Title.Text, Title.Shadow… properties.

 chart.Title.Text = "Title text";

Y-axes

 The vertical axes representing Y values. See chapter 6.2.

X-axis

 The horizontal axes representing X values. See chapter 6.3.

Annotations

 Annotations allows displaying mouse-interactive text labels or graphics anywhere in the chart

 area. See chapter 6.26.

Legend box

 Lists all the series of the chart. See chapter 6.27.

Scrollbar

 A scrollbar having unsigned 64-bit value range, to support massive count of sample indices

 directly. In fact, HorizontalScrollBars and VerticalScrollBars are collection properties in the

 chart root level, but they are aware of ViewXY’s margins. See chapter 13.

Copyright LightningChart Ltd 2009-2023 65

6.1 Axis layout options

The general properties adjusting axis placement, automatic margins etc. can be found in

ViewXY.AxisLayout properties and sub-properties.

Figure 6-3. AxisLayout property tree.

 Setting how axes are placed

6.1.1.1 X-axis automatic placement

Demo examples: Automatic axis placements; Several axes

XAxisAutoPlacement controls how the X axes are placed vertically.

chart.ViewXY.AxisLayout.XAxisAutoPlacement = XAxisAutoPlacement.AllBottom;

Figure 6-4. XAxisAutoPlacement = AllBottom. Three X axes added, all are positioned below the graph.

66 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-5. XAxisAutoPlacement = AllTop. All X axes are positioned above the graph.

Figure 6-6. XAxisAutoPlacement = BottomThenTop. Axes are distributed below and above the graph, every other axis to
the opposite side, starting from bottom.

Figure 6-7. XAxisAutoPlacement = TopThenBottolm. Axes are distributed below and above the graph, every other axis
to the opposite side, starting from top.

Copyright LightningChart Ltd 2009-2023 67

Figure 6-8. XAxisAutoPlacement = Explicit. The axis appears on the side of the selected explicitly. XAxis1 has
ExplicitAutoPlacementSide property set to Bottom, whereas XAxis2 and XAxis3 to Top.

Figure 6-9. XAxisAutoPlacement = Off. Automatic axis placement is disabled, and Position and Alignment properties of
each axis apply separately. First axis Position = 0, Second axis Position = 50 and Third axis position = 100.

6.1.1.2 Y-axis automatic placement

Demo examples: Y axis layouts; Automatic axis placements; Several axes

YAxisAutoPlacement controls how the Y-axes are placed horizontally.

chart.ViewXY.AxisLayout.YAxisAutoPlacement = YAxisAutoPlacement.AllLeft;

68 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-10. YAxisAutoPlacement = AllLeft. Three Y axes added, all are positioned to the left side of the graph.

Figure 6-11. YAxisAutoPlacement = AllRight. All Y axes are positioned to the right side of the graph.

Figure 6-12. YAxisAutoPlacement = LeftThenRight. Axes are distributed to left and right side of the graph, every other
axis to the opposite side, starting fromthe left side.

Copyright LightningChart Ltd 2009-2023 69

Figure 6-13. YAxisAutoPlacement = RightThenLeft. Axes are distributed to left and right side of the graph, every other
axis to the opposite side, starting from the right side.

Figure 6-14. YAxisAutoPlacement = Explicit. The axis appears on the side of the selected explicitly. YAxis1 and YAxis2
have ExplicitAutoPlacementSide property set to Left, and YAxis3 to Right.

Figure 6-15. YAxisAutoPlacement = Off. Automatic axis placement is disabled, and Position and Alignment properties of
each axis apply separately. First axis Position = 0, Second axis Position = 20 and Third axis position = 80.

70 LightningChart® .NET User’s Manual, rev. 10.5

 Graph segments and Y axes placement in them

If there are several Y axes defined, they can be vertically aligned in 3 different ways: Layered, Stacked

and Segmented. This can selected by ViewXY.AxisLayout.YAxesLayout property.

6.1.2.1 Layered

Demo examples: Y axis layouts; Automatic axis placements

In Layered view, all the Y axes start from the top of the graph and stretch to the bottom of the graph.

The axes and the series bound to them share the same vertical space.

chart.ViewXY.AxisLayout.YAxesLayout = YAxesLayout.Layered;

Figure 6-16. An example view of 4 Y axes in YAxesLayout = Layered.

6.1.2.2 Stacked

Demo examples: Y axis layouts; Multi-channel cursor tracking; Data breaking in series

In Stacked view each Y axis gets its own vertical space. All Y axes have equal height.

chart.ViewXY.AxisLayout.YAxesLayout = YAxesLayout.Stacked;

Copyright LightningChart Ltd 2009-2023 71

Figure 6-17. An example view of 4 Y axes in YAxesLayout = Stacked.

6.1.2.3 Segmented

Demo examples: Y axis layouts; Multiple legends; Segments with splitters

In Segmented view the vertical space is divided between Segments. Each segment can contain

several Y axes. The relational height of each segment can be set, and every Y axis within a segment

gets the segment's height.

chart.ViewXY.AxisLayout.YAxesLayout = YAxesLayout.Segmented;

Segments must be created in AxisLayout.Segments collection. The segment added first will be placed

on the bottom of the chart. A segment has only one property, Height. It is a relational size versus

other segments. It is not defined in screen pixels, as the segments need to rescale with the chart's

size.

 // Adding two segments, the second one is twice as high as the first one

chart.ViewXY.AxisLayout.Segments.Add(new YAxisSegment());

chart.ViewXY.AxisLayout.Segments.Add(new YAxisSegment());

chart.ViewXY.AxisLayout.Segments[0].Height = 1;

chart.ViewXY.AxisLayout.Segments[0].Height = 2;

The Y axes can be assigned with a segment by setting yAxis.SegmentIndex property. The

SegmentIndex is the index in the AxisLayout.Segments collection.

chart.ViewXY.YAxes[0].SegmentIndex = 0;

chart.ViewXY.YAxes[1].SegmentIndex = 1;

72 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-18. An example view of 4 Y axes in YAxesLayout = Segmented. First two segments have Height = 1, and last
segment has Height of 2.5. Axis1.SegmentIndex = 0, Axis2.SegmentIndex = 1, Axis3 and Axis4.SegmentIndex = 3.

When a Stacked or Segmented view is selected, the vertical space between graph segments can be

adjusted by using ViewXY.AxisLayout.SegmentsGap property.

chart.ViewXY.AxisLayout.SegmentsGap = 10; // Sets 10 pixel gap between each segment

If there is a large amount of Y axes defined, AutoShrinkSegmentsGap property should be enabled to

automatically decrease the gaps. By doing so, every Y axis gets at least some vertical space to be drawn.

chart.ViewXY.AxisLayout.AutoShrinkSegmentsGap = false;

ViewXY.GetGraphSegmentInfo() -method can be used to find out where the graph segment borders

are, if there is a need to implement segment specific user interface logic.

// Getting top and bottom coordinates of every segment

float[] topCoords = chart.ViewXY.GetGraphSegmentInfo().SegmentTops;

float[] bottomCoords = chart.ViewXY.GetGraphSegmentInfo().SegmentBottoms;

 Axis grid strips

Demo examples: Historic data review; Zoom bar chart

The axis grid (division) intervals can be shown over the graph background as fills. By setting

ViewXY.AxisLayout.AxisGridStrips to X, X-axis is used to set the strips. Respectively, by setting

AxisGridStrips to Y, Y-axis is used to set the strips. Both -option sets the strips for both X and Y axis, while

None shows no grid strips are used at all.

Copyright LightningChart Ltd 2009-2023 73

chart.ViewXY.AxisLayout.AxisGridStrips = XYAxisGridStrips.X;

XGridStripAxisIndex sets the X-axis that is to be used for strips in case several axes are used. Only one X-

axis can be set at a time.

chart.ViewXY.AxisLayout.XGridStripAxisIndex = 0;

YGridStripAxisIndexLayered sets the Y-axis to be used for strips, when Layered YAxisLayout -option is

used. When Stacked layout, all Y-axes have their own strips.

chart.ViewXY.AxisLayout.YGridStripAxisIndexLayered = 0;

The strip colors can also be adjusted in GridStripColor property of X- or Y-axis object.

chart.ViewXY.YAxes[0].GridStripColor = Color.FromArgb(80, 0, 0, 100);

Figure 6-19. AxisGridStrips = None.

Figure 6-20. AxisGridStrips =X.

74 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-21. AxisGridStrips = Y.

Figure 6-22. AxisGridStrips = Both. GridStripColor has also been changed for the Y-axis.

 Limit Y-value to stack segment

Every XY series has LimitYToStackSegment property. When enabled, the series will be clipped outside

the segment and the Y-axis area it belongs to. In most cases the property is a boolean to control

whether the data should be clipped or not. However, some newer series (SampleDataBlockSeries,

LiteLineSeries and LiteFreeformLineSeries) have additional options. There LimitYToStackSegment is of

enumerated type with option: None (no clipping), Clip (line will be clipped as for old series) and

ClampToSegment (if line exceeds segment’s edge, it will be rendered horizontally on the edge). Note

that for LiteFreeformLineSeries, a line with ClampToSegment enabled will be rendered along the edge

as far as the real point X-value would be. Therefore, it may be longer than other series clamping line.

Copyright LightningChart Ltd 2009-2023 75

Figure 6-23. LimitYToStackSegment was set for SampleDataBlockSeries. ClampToSegment option is used for top series,
while Clip for bottom.

 Other AxisLayout options

AutoAdjustAxisGap sets the space between two adjacent axis areas in pixels, when XAxisAutoPlacement

or YAxisAutoPlacement is enabled.

chart.ViewXY.AxisLayout.XAxisAutoPlacement = XAxisAutoPlacement.AllBottom;

chart.ViewXY.AxisLayout.AutoAdjustAxisGap = 10;

By enabling XAxisTitleAutoPlacement (or YAxisTitleAutoPlacement), the axis title distance is

automatically calculated based on value labels’ length, alignment options of axes and tick lines. If

XAxisTitleAutoPlacement (or YAxisTitleAutoPlacement) is disabled, Title.DistanceToAxis of axis object

property sets the distance to axis line instead.

chart.ViewXY.AxisLayout.XAxisTitleAutoPlacement = false;

chart.ViewXY.XAxis[0].Title.DistanceToAxis = -20;

6.2 Y axes

An unlimited count of Y axes can be defined. Add the Y axes by using YAxes collection property.

// Adding Y-axes to the chart

chart.ViewXY.YAxes.Add(new AxisY());

AxisY axisY = new AxisY(_chart.ViewXY);

axisY.Title.Text = "Y-axis";

chart.ViewXY.YAxes.Add(axisY);

76 LightningChart® .NET User’s Manual, rev. 10.5

 AxisY class properties

Figure 6-24. Y axis, divisions and grid.

 Tick value labels formatting

Demo examples: High-Low; Temperature graph; Multi-channel cursor tracking; Map route

AutoFormatLabels allows the count of decimals, time format representation, or the use of exponential

representation, to be calculated automatically to be suitable for visible range. To set the value

formatting manually, AutoFormatLabels should be disabled.

chart.ViewXY.YAxes[0].AutoFormatLabels = false;

LabelsNumberFormat can be used to set the format of numeric values.

// Always use two decimals
chart.ViewXY.YAxes[0].LabelsNumberFormat = "0.00";

// Exponential presentation with one decimal
chart.ViewXY.YAxes[0].LabelsNumberFormat = "0.0E+00";

To set the time formatting manually, use LabelsTimeFormat property. It supports any count of second

fractions (e.g. “.ffffffff”) allowing precise zoomed views.

// Show hours, minutes, seconds and four significant digits
_chart.ViewXY.YAxes[0].LabelsTimeFormat = "HH:mm.ss.ffff";

Copyright LightningChart Ltd 2009-2023 77

 Value type

ValueType -property controls which value types are used by the axis labels.

 // Changing axis value type

chart.ViewXY.YAxes[0].ValueType = AxisValueType.DateTime;

ValueType has the following options available:

Number

Regular numeric format for integer and decimal presentation. When AutoFormatLabels is

disabled, LabelsNumberFormat applies. Default value.

Time

For time of day presentation. When AutoFormatLabels is disabled, LabelsTimeFormat applies.

DateTime

Date presentation, with optional time of day. When AutoFormatLabels is disabled,

LabelsTimeFormat applies here as well, similarly to Time type.

Note! For best accuracy, it is adviced to set DateOriginYear, DateOriginMonth and

DateOriginDay just below the dates shown in the chart. Use DateTimeToAxisValue method

to obtain axis values from a .NET DateTime object to be used in series data.

// Convert current time to Y value

data[0].Y = chart.ViewXY.YAxes[0].DateTimeToAxisValue(DateTime.Now);

MapCoordsDegrees

 Geographical map coordinate presentation in degrees decimals.

Example: 40.446195° -79.948862°

MapCoordsDegNESW

 Geographical map coordinate presentation in degrees decimals, with N, E, S, W indication.

Example: 40.446195N 79.948862W

MapCoordsDegMinSecNESW

Geographical map coordinate presentation in degrees, arc minutes, arc seconds, with N, E, S,

W indication.

Example: 40°2'13"N 9°58'2"W

78 LightningChart® .NET User’s Manual, rev. 10.5

MapCoordsDegPadMinSecNESW

Geographical map coordinate presentation in degrees, arc minutes, arc seconds, with N, E, S,

W indication. The arc minute and second values are padded with zeros, if they are < 10. It is a

great way to present coordinates in Y axis, as the numbers are aligned.

Example: 40°02'13"N 9°58'02"W

 Range setting

Set the value range of an axis by giving values to Minimum and Maximum properties. Minimum shouldt

be less than Maximum. When trying to set Minimum > Maximum, or vice versa, internal limiter will limit

the values near the other value. To set both values simultaneously, use SetRange(…) method. Passing

Minimum > Maximum in SetRange automatically flips these values so that Minimum < Maximum.

chart.ViewXY.YAxes[0].Minimum = 5;

chart.ViewXY.YAxes[0].SetRange(5, 10);

The value range of Y axis can be scrolled directly by dragging the axis with mouse when AllowScrolling is

enabled. Minimum or Maximum can be modified by dragging the scale nib area (end of an axis) up or

down when AllowScaling property is enabled.

// Enabling / disabling dragging with mouse

chart.ViewXY.YAxes[0].AllowScrolling = true;

chart.ViewXY.YAxes[0].AllowScaling = true;

 Restoring range

Axis has properties RangeRevertEnabled, RangeRevertMaximum and RangeRevertMinimum. They can

be used to revert axis ranges to specific values when mouse zooming is applied from right to left. See

6.28.5 for details.

 Divisions

Divisions, controlled by MajorDiv and MinorDiv -properties, determine the amount of major and minor

ticks in the chart. For example, setting five major divisions divides the Y-axis in five equally sized spaces

separated by a tick and a major grid line. By default, major ticks are enabled, and minor ticks disabled.

// Enabling minor division ticks

chart.ViewXY.YAxes[0].MinorDivTickStyle.Visible = true;

Copyright LightningChart Ltd 2009-2023 79

AutoDivSpacing -property allows the major divisions to be calculated automatically. It is enabled by

default. The spacing is calculated based on value labels’ font size and AutoDivSeparationPercent

properties to be as user-friendly as possible. AutoDivSeparationPercent leaves a space between the

value labels. It is based on the label’s height, meaning that increasing the value reduces the amount of

major divisions. AutoDivSpacing and AutoDivSeparationPercent do not affect minor divisions. Instead,

they are calculated between major divisions based on the MinorDivCount property value.

// 100 percent of value labels’ height left between each label

chart.ViewXY.YAxes[0].AutoDivSeparationPercent = 100;

If AutoDivSpacing is disabled, the division spacing can be controlled manually with MajorDiv and

MajorDivCount -properties. MajorDiv controls the spacing by magnitude, whereas MajorDivCount

controls it by division count. KeepDivCountOnRangeChange property can be used to force maintaining

the divisions count the same whenever the axis range is changed, regardless of MajorDiv setting.

// Major ticks after each 20 units (0, 20, 40, 60…)
chart.ViewXY.YAxes[0].MajorDiv = 20;

// Show exactly five major divisions

chart.ViewXY.YAxes[0].MajorDivCount = 5;

// Keep the division count the same even if the axis range is changed

chart.ViewXY.YAxes[0].KeepDivCountOnRangeChange = true;

Major division tick style can be set from MajorDivTickStyle property. Edit the ticks and labels orientation

by using MajorDivTickStyle.Alignment property. The value labels are drawn next to major division ticks.

Respectively, the minor division properties can be modified with MinorDivTickStyle property.

// Changing alignment and tick length of the major division ticks
chart.ViewXY.YAxes[0].MajorDivTickStyle.Alignment = Alignment.Far;

chart.ViewXY.YAxes[0].MajorDivTickStyle.LineLength = 20;

 Grid

Horizontal grid lines are drawn on vertical positions of division ticks. Major grid for major division ticks,

minor grid for minor division ticks. MajorGrid and MinorGrid properties can be used to edit the

appearance of the grids.

// Modifying the grid styles
chart.ViewXY.YAxes[0].MajorGrid.Color = Color.FromArgb(100, 200, 200, 200);

chart.ViewXY.YAxes[0].MinorGrid.Pattern = LinePattern.Dash;

80 LightningChart® .NET User’s Manual, rev. 10.5

 Custom ticks

Demo examples: Custom axis ticks; Date axes and custom ticks

Axis tick positions and label texts can be manually set by using custom ticks. Set CustomTicksEnabled

true and define the positions of the ticks with the CustomTicks list property.

 Figure 6-25. Custom tick properties

Custom ticks can consist of a tick, a grid or both. Use Style to select between Tick, Grid or TickAndGrid

respectively. The color of a tick or a grid can be modified via Color property. Set tick length in Length

property. The grid line pattern follows the setting of MajorGrid.Pattern and PatternScale properties of

axis.

CustomAxisTick has AxisValue and LabelText properties to define their positions and corresponding label

texts. When using custom ticks, disable AutoFormatLabels to show the custom label texts. Furthermore,

InvalidateCustomTicks() should be called after setting new custom ticks in code.

// Adding a custom tick with a green tick and grid line

_chart.ViewXY.YAxes[0].CustomTicks.Add(new CustomAxisTick(_chart.ViewXY.YAxes[0],

14, "Sell level\nUSD 14", 10, true, Colors.Green, CustomTickStyle.TickAndGrid));

// White tick with no grid line

_chart.ViewXY.YAxes[0].CustomTicks.Add(new CustomAxisTick(_chart.ViewXY.YAxes[0],

12.2, "Month\nmedian", 20, true, Colors.White, CustomTickStyle.Tick));

// Red tick and grid line

_chart.ViewXY.YAxes[0].CustomTicks.Add(new CustomAxisTick(_chart.ViewXY.YAxes[0],

11, "Buy level\nUSD 11", 10, true, Colors.Red, CustomTickStyle.TickAndGrid));

// Allow showing the custom tick strings

_chart.ViewXY.YAxes[0].CustomTicksEnabled = true;

_chart.ViewXY.YAxes[0].AutoFormatLabels = false;

_chart.ViewXY.YAxes[0].MajorGrid.Pattern = LinePattern.Dot;

_chart.ViewXY.YAxes[0].InvalidateCustomTicks();

Copyright LightningChart Ltd 2009-2023 81

Figure 6-26. Custom ticks on Y axis. On the left, axis.AutoFormatLabels = false. On the right, AutoFormatLabels = True.

Minor ticks or grids are not shown when CustomAxisTicksEnabled is true. To set arbitrary minor ticks or

grids, just add CustomAxisTicks in the CustomTicks collection with different colors or line lengths.

 Event based axis value formatting

Demo examples: Axis range edit, value labels; Business dashboard; Intensity persistent layer, signal

Besides CustomAxisTicks, axis value labels can also be formatted via FormatValueLabel -event. It

modifies each value label of the corresponding axis based on the returned string value. The event has

e.Axis and e.Value properties, which can be used access the axis object and the label value being

modified. Unlike CustomAxisTicks, FormatValueLabel cannot be used to change the position of the

labels, as they still follow the division settings (chapter 6.2.6) for the axis.

// Subscribing to FormatValueLabel -event for the Y-axis

_chart.ViewXY.YAxes[0].FormatValueLabel += Chart_FormatValueLabel;

 // Modifying the value labels inside the event

 private string Chart_FormatValueLabel(object sender, FormatValueLabelEventArgs e)

 {

 return "Y-axis value: " + e.Value.ToString();

}

82 LightningChart® .NET User’s Manual, rev. 10.5

 Figure 6-27. FormatAxisValues used with the lower y-axis. The values are shown as ”Y-axis value: ” + current value

FormatValueLabel can be used with both Y- and X-axis as well as with every axis in View3D.

 Reversed X and Y axis

X and Y axis can be shown reversed, so that minimum value is above/later than the maximum value.

Handy feature when, for example, visually negating polarity of the series data assigned to the Y axis.

chart.ViewXY.YAxes[0].Reversed = true;

 Logarithmic axes

Demo examples: Logarithmic axes; Minimal logarithmic values; Log axis fit, ignore zeros

Set ScaleType to Logarithmic to use a logarithmic presentation. Set the logarithm base value with

LogBase property. The chart can also show logarithmic values between 0…1. Use LogZeroClamp to set

the minimum value in the axis. To use typical minimum value of a log axis, set 1. To use values below

zero, set a proper small positive value, like 1.0E-20, suitable for the used data. To use special formatting

for tick labels, set LogLabelsType.

Copyright LightningChart Ltd 2009-2023 83

// Setting a logarithmic axis

chart.ViewXY.YAxes[0].ScaleType = ScaleType.Logarithmic;

chart.ViewXY.YAxes[0].LogBase = 10;

chart.ViewXY.YAxes[0].LogZeroClamp = 1;

chart.ViewXY.YAxes[0].LogLabelsType = LogLabelsType.Log10Exponential;

6.2.11.1 Exponential presentation for 10 base

Figure 6-28. Logarithmic Y axis with values near zero. LogZeroClamp is set to 1.0E-20. LogBase is set to 10, LogLabelsType is
set to Log10Exponential, to show the values in 1.0E presentation.

84 LightningChart® .NET User’s Manual, rev. 10.5

6.2.11.2 Natural logarithm

 Converting between axis values and screen coordinates

Axes have methods to convert axis values (data point values) to screen coordinates and screen

coordinates to axis values. Use ValueToCoord method to convert an axis value to a screen coordinate,

and CoordToValue to convert a screen coordinate to an axis value. Set UseDIP = False, if pixels are

preferred, not Device independent pixels (DIPs).

float screenCoordinate = _chart.ViewXY.XAxes[0].ValueToCoord(axisValue);

ValueToCoord and CoordToValue methods are available after the chart has got its final size. For example,

subscribe to chart.AfterRendering event to ensure the chart has been fully rendered.

To convert multiple values or coordinates at once, use ValuesToCoords and CoordsToValues methods.

They take/return axis values as double arrays (integer array for X axis CoordToValue) and screen

coordinates as float arrays.

chart.ViewXY.YAxes[0].CoordsToValues(coordArray, out doubleValueArray, false);

Figure 6-29. Natural logarithm view. LogBase is set to Math.E LogLabelsType is set to LogE_MultiplesOfNeper.

Copyright LightningChart Ltd 2009-2023 85

 MiniScale

MiniScale is a miniature X and Y axis substitute. In some applications this kind of scale presentation is

preferred for quick visual overview of data magnitude, or alternatively, when there’s no space for actual

axes. MiniScale can be enabled via Visible -property. MiniScale is a sub-property of Y axis class. However,

the X dimension is always bound to the first X axis (XAxes[0]). Set the visible units by modifying Units.Text

property of X and Y axis. MiniScale cannot be used together with logarithmic axes.

// Configuring a MiniScale

chart.ViewXY.YAxes[0].MiniScale.Visible = true;

chart.ViewXY.YAxes[0].MiniScale.VerticalAlign = AlignmentVertical.Bottom;

chart.ViewXY.YAxes[0].MiniScale.Offset.SetValues(-10, -30);

chart.ViewXY.YAxes[0].MiniScale.PreferredSize = new SizeDoubleXY(30, 30);

chart.ViewXY.XAxes[0].Units.Text = "s";

chart.ViewXY.YAxes[0].Units.Text = "µV";

Figure 6-30. MiniScale in the bottom-right corner of the graph.

 Axis end point labels

Regular axis major ticks and labels are placed at uniform intervals. Therefore, axis minimum or maximum

could be without a label, especially when the axis is panned, scrolled or logarithmic axis is zoomed deeply.

The labels can be enforced to be shown at both ends of axis by enabling EndPointLabelsVisible property.

PreferEndPointLabelsOverNearbyMajorTick property controls if the end label or a regular major tick

label is preferred if their positions overlap. EndPointMajorTickThreshold property defines the number

of major ticks that must be visible before the end point labels are hidden. The default -1 means the end

point labels will always be visible. If logarithmic axis major tick count <= EndPointMajorTickThreshold,

then label next to minor tick will be shown.

MiniScale

86 LightningChart® .NET User’s Manual, rev. 10.5

6.3 X axis

X axis divisions and grid settings are equal to Y axes settings. Therefore, all the properties and features

explained in the previous chapter can be applied to X axis as well. However, X axes has several real-time

scrolling related properties Y axes don’t have.

 Real-time monitoring scrolling

Demo examples: Billion Points; Temperature graph; Thread-fed multi-channel data

When making a real-time monitoring solution, the X axis must be scrolled to correctly show the current

monitoring position, which usually is the time stamp of latest signal point. Set the latest time stamp to

ScrollPosition property after the new signal points have been set to a series.

// Set real-time monitoring scroll position to the latest X value

chart.ViewXY.XAxes[0].ScrollPosition = latestDataPoint.X;

LightningChart has several scrolling modes, selected using ScrollMode property.

chart.ViewXY.XAxis[0].ScrollMode = XAxisScrollMode.Scrolling;

Figure 6-31. On the left chart’s X axis PreferEndPointLabelsOverNearbyMajorTick is disabled, while on the right this property is
enabled. The left chart’s Y axis is set to always show end labels (EndPointLabelsVisible=true, EndPointMajorTickThreshold=-1),
while the right chart’s Y axis is configured to show a minor tick in addition to one major tick (EndPointLabelsVisible=true,
EndPointMajorTickThreshold=1).

Copyright LightningChart Ltd 2009-2023 87

6.3.1.1 None

The default option. No scrolling is applied when setting ScrollPosition to None. This is often the selection

to use when not using real-time monitoring.

6.3.1.2 Stepping

When collected data reaches the end of the X axis, the axis with all series data is shifted left by a stepping

interval. This shift is executed everytime the X axis end is reached. SteppingInterval property is defined

as value range.

chart.ViewXY.XAxes[0].SteppingInterval = 3;

Figure 6-32. X axis scroll mode: stepping

6.3.1.3 Scrolling

X axis is kept stationary until scrolling gap has been reached, after which the X axis with all series is

continuously shifted left. If the scrolling should take effect when the scroll position reaches the end of X

axis, set ScrollingGap to 0. ScrollingGap property is defined as percents of graph width.

chart.ViewXY.XAxes[0].ScrollingGap = 15;

88 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-33. X axis scroll mode: scrolling

Waveform stability during scrolling

LightningChart supports incremental rendering data construction of real-time signal, when

using series.AddPoints(), AddValues() or AddSamples() -methods. This means that rendering

data is calculated only from the new part of data and combined with the existing rendering

data.

PointLineSeries, SampleDataSeries, AreaSeries and HighLowSeries have a specific property

for ScrollMode = Scrolling, which effects the visual stability of scrolled series maintaining the

waveform quality. The property is called ScrollingStabilizing.

chart.ViewXY.PointLineSeries[0].ScrollingStabilizing = true;

When ScrollingStabilizing is enabled, floating point coordinates are rounded to nearest

integer coordinate, which results into a visually stable, non-fluctuating waveform. In most

cases, this is the best approach. It may, however, distort the phase info slightly when rounding

the coordinates.

When ScrollingStabilizing is disabled, data rendering uses floating point coordinates which

appear as slightly fluctuating waveform when GPU decides the pixel coordinate. This gives

better visual quality especially when displaying sine data where there’s a transition going up

and down nearly every other pixel.

To use incremental rendering data construction, add new points as follows

chart.BeginUpdate();

series.AddPoints(array,false);

xAxis.ScrollPosition = latestXValue;

chart.EndUpdate();

Copyright LightningChart Ltd 2009-2023 89

Full refresh of rendering data can be made any time with InvalidateData() call of series.

chart.BeginUpdate();

series.AddPoints(array,false);

series.InvalidateData();

xAxis.ScrollPosition = latestXValue;

chart.EndUpdate();

 Performance Stability Phase
series.AddPoints(),
ScrollStabilizing
disabled

Perfect Impaired Good

series.AddPoints(),
ScrollStabilizing
enabled

Perfect Best Slightly impaired

series.AddPoints(),
InvalidateData()

Impaired Impaired Perfect

 Table 5-1. Waveform stability during scrolling

6.3.1.4 Sweeping

Sweeping mode gives probably the most user-friendly real-time monitoring view. Sweeping uses two X

axes. The first axis is collected full after which a sweeping gap appears. The second X axis is then swept

over the first one. Both X axes show their own value labels. SweepingGap property is defined as percents

of graph width.

chart.ViewXY.XAxes[0].SweepingGap = 5;

 Figure 6-34. X axis scroll mode: sweeping

90 LightningChart® .NET User’s Manual, rev. 10.5

6.3.1.5 Triggering

The X axis position is determined by a series value exceeding or falling below a trigger level. Use

Triggering property to set the triggering options. Triggering can be set active by enabling

Triggering.TriggeringActive property.

One series has to be set as a triggering series. Accepted triggering series types are PointLineSeries and

SampleDataSeries. Set the triggering Y level with Triggering.TriggerLevel. Use

Triggering.TriggeringXPosition to order where the level triggered point will be drawn horizontally, as

percents of graph width.

Figure 6-35. X axis scroll mode: Triggered with static X grid.

When using a triggered X-axis scroll position, it usually is not suitable to show the regular X axis with

values and grid because of jumping from place to another based on the incoming series data.

• Approach 1: Use static X grid. Hide the regular X axis objects by setting XAxis.Visible = false

(or LabelsVisible = false, MajorGrid.Visible = false and MinorGrid.Visible = false). Then, show

the static X grid by setting Triggering.StaticMajorXGridOptions and

Triggering.StaticMinorXGridOptions.

• Approach 2: Create another X axis, with preferred scale, and set it to ViewXY collection.

Don’t assign the second XAxis for the series.

For scale indication, use Y axis MiniScale or define an Annotation object (see chapter 6.26) to show range

like “200 ms/div”.

Copyright LightningChart Ltd 2009-2023 91

 Scale breaks

Demo examples: Scale breaks; Stock course with previous close

Starting from version 8, X axes support ScaleBreaks. ScaleBreaks allow excluding specific X ranges, e.g.

inactive trading hours/dates or machinery off-production hours. All the series, that have been assigned

to the specified X axis, are clipped, including axis and labels themselves.

There are limitations of when ScaleBreaks can be used: ScrollMode must be set to ‘None’ and ScaleType

to ‘Linear’.

Insert the ScaleBreak objects in ScaleBreaks collection of X axis.

Figure 6-36. ScaleBreak properties.

Specifiy the range of the break with Begin and End. They are given as axis values, not DateTimes. Use

axis.DateTimeToAxisValue method to convert them if using DateTimes.

Gap width can be adjusted with Gap, also 0 is accepted if no gap should be visible. Gap appearance can

be configured with Style.

• With Style = ‘Fill’, adjust the fill with Fill property.

• With Style = ‘DiagonalLineUp’ or ‘DiagonalLineDown’, adjust the appearance with

DiagonalLineSpacing and LineStyle properties.

By setting Enabled = False, the break is not effective.

PointLineSeries, AreaSeries and HighLowSeries have ContinuousOverScaleBreak property. By enabling

it, a connecting line will be rendered over the gap.

92 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-37. Original trading data, Monday to Friday, 10 AM – 6 PM. ScaleBreaks haven’t been applied. Majority of the time range
doesn’t have data as stock exchange has been closed making it harder to see the essential info. PointLineSeries jumping from
Close-to-Close values.

Figure 6-38. ScaleBreaks applied to exclude non-active trading hours. More screen space is available for essential data. Style = Fill,
Gap = 10. PointLineSeries jumping from Close-to-Close values, PointLineSeries.ContinuousOverScaleBreak = True.

Figure 6-39. ScaleBreaks applied, during non-active trading hours. Style = DiagonalLinesUp, Gap = 20.
PointLineSeries.ContinuousOverScaleBreak = True.

Copyright LightningChart Ltd 2009-2023 93

 Figure 6-40. PointLineSeries.ContinuousOverScaleBreak = False. The lines are not connected from previous point to next
 point over the gap. Instead, they continue to their original direction as if no scale break has been defined.

6.4 Margins

Margins are empty spaces around the graph area. All the contents of the view are fitted inside the

margins except for annotations, legend boxes and the chart title.

Figure 6-41. Margins surrounding the graph area. Content is fitted inside the margin area. Chart title and legend box can be
positioned on margins.

94 LightningChart® .NET User’s Manual, rev. 10.5

When AutoAdjustMargins is enabled, the graph size is adjusted so that there is enough space for all the

axes and chart title. When it is disabled, ViewXY.Margins property applies allowing setting margins

manually.

By default, a customizable border rectangle, Border, is drawn around the graph area in the location of

margins. It can be turned off by setting Border.Visible = False. The color of the Border can also be

changed via Color property. Furthermore, Border can also be rendered behind the series by setting

RenderBehindSeries to True.

During the run time, the margin rectangle in pixels can be retrieved by calling ViewXY.GetMarginsRect

method, which applies to both automatic and manual margins. It is useful when needing to do screen-

coordinate based computation or object placement.

ViewXY.MarginsChanged event can be set to trigger when a margin rectangle has been changed because

of for example resizing it.

Copyright LightningChart Ltd 2009-2023 95

6.5 ViewXY series, general

ViewXY’s series allow data visualization in different ways and formats. All series are bound to axis value

ranges. Also, the series must be bound to one Y axis. Series have AssignXAxisIndex and AssignYAxisIndex

property for assigning the X and Y axis. In code, assign the X and Y axis with series constructor parameter,

alternatively.

 Automatic series title placement

Demo examples: Minimal logarithmic value

Each XY series has title (by default hidden), for which style and position could be modified through

properties (series.Title.propertyName). Enabling ViewXY.TitlesAutoPlacement.Enabled informs chart

that series’ Title location should be calculated automatically in order to avoid multiple titles overlapping

each other. Title position could be locked at current X-Y value by enabling series.Title.LockAutoPosition

property. Auto positioning is reset with ViewXY.TitlesAutoPlacement.Reset() method.

6.6 PointLineSeries

Demo examples: Point line; Temperature graph; Line, palette coloring

 Figure 6-42. Overview of PointLineSeries

96 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-43. Three different PointLineSeries.

A PointLineSeries can present a simple line, points (scatter) or both as a point line. Add the series to chart

by adding PointLineSeries objects to PointLineSeries list.

chart.ViewXY.PointLineSeries.Add(series); // Add series to the chart

 Line style

All line series can render a line (between 2 or more points). The series have properties controlling color

and width of the line under LineStyle class. If the line should not be visible, set LineVisible = false. In

addition to those properties, line pattern also could be modified. Available options include Solid, Dot,

Dash, DashDot and SmallDot. Pattern line could be drawn for SampleDataSeries, PointLineSeries,

FreeformPointLineSeries, AreaSeries, HighLowSeries and LineCollection. For these series PatternScale

property can be used to modify the length of each dash or dot.

With SampleDataBlockSeries, LiteLineSeries, LiteFreeformLineSeries and DigitalLineSeries only solid

line could be drawn.

 Points style

To show the points, set PointsVisible = true. Alter the point style by setting PointStyle properties. Select

the shape from many pre-defined styles from PointStyle.Shape. One of the shape styles is Bitmap, which

allows drawing any bitmap image in the point location. Define the bitmap image with BitmapImage

property. BitmapAlphaLevel property can be used to alter the transparency of the bitmap. Adjust the

bitmap color tone by changing BitmapImageTintColor to some other color than white. When using pre-

Copyright LightningChart Ltd 2009-2023 97

defined point styles, like Circle, Triangle, Cross etc. the drawing colors and filling styles can be defined.

Note that all colors or fills are not applicable for all shape styles. Point width and height can be set and

the points can be rotated as well.

 Coloring points individually

Demo examples: Point line, individually colored points, Scatter points, individually colored

Starting from v.7.2, the PointLineSeries, FreeformPointLineSeries, AreaSeries and HighLowSeries have

PointColor field in the data point structures.

To enable individual point coloring, set IndividualPointColoring to Color1, Color2, Color3 or BorderColor

setting. To disable individual point coloring, set IndividualPointColoring = Off. The color settings

correspond to that color in PointStyle property.

Figure 6-44. In top, IndividualPointColoring = Color1 (solid colored point). In the middle, IndividualPointColoring =
BorderColor. In the bottom, IndividualPointColoring = Color2 (having gradient coloring with Color1 = transparent).

 Adding points

The series points must be added in code. Use AddPoints(SeriesPoint[], bool invalidate) method to add

points to the end of existing points.

chart.ViewXY.PointLineSeries[0].AddPoints(pointsArray); //Add points to the

end

To set whole series data at once, and overwrite old points, assign the new point array directly:

chart.ViewXY.PointLineSeries[0].Points = pointsArray; //Assign the points

array

98 LightningChart® .NET User’s Manual, rev. 10.5

Note! The PointLineSeries points X values must be in ascending order. If they have to be otherwise

ordered, use FreeformPointLineSeries instead.

For example, definition Points[0].X = 0, Points[1].X = 5, Points[2].X = 5, Points[3].X = 6 is valid.

But Points[0].X = 2, Points[1].X =1, Points[2].X = 6, Points[3].X =7 is not a valid value array for

PointLineSeries.

 Adding points, alternative way

Points can also be added in X and Y values arrays, which turns to be more convenient way in many

applications.

chart.ViewXY.PointLineSeries[0].AddPoints(xValuesArray,yValuesArray,false);

To set whole series data at once, and overwrite old points, assign the X and Y values arrays directly

(applicable in WinForms and WPF Non-bindable APIs).

chart.ViewXY.PointLineSeries[0].SetValues(xValuesArray, yValuesArray);

6.7 LiteLineSeries

LiteLineSeries is a version of PointLineSeries, that is optimized for much faster performance. It works

similarly to PointLineSeries but has less configuration options. LiteLineSeries draws only the line

between the data points but not the points themselves. Furthermore, it has only Color and Width

properties to adjust the series appearance. LiteLineSeries expects data points to be in progressive order.

Use AddPoints() method to add data point arrays to the series. These arrays should be of type double[,]

where the first value is the data point index while the second value has both X-and Y-values

ActualPointCount() can be called to find out the total number of points.

// Adding a LiteLineSeries with some random data points.

LiteLineSeries lls = new LiteLineSeries(_chart.ViewXY,

_chart.ViewXY.XAxes[0], _chart.ViewXY.YAxes[0]);

lls.Width = 2;

lls.Color = Colors.Lime;

double[,] values = new double[21, 2];

for (int i = 0; i < 21; i++)

{

 values[i, 0] = i;

 values[i, 1] = rand.NextDouble() * 100;

}

lls.AddPoints(values, false);

_chart.ViewXY.LiteLineSeries.Add(lls);

Copyright LightningChart Ltd 2009-2023 99

6.8 SampleDataSeries

Demo examples: Billion points; Thread-fed multi-channel data; Signal reader

 Figure 6-45. Overview of SampleDataSeries

Add the series to chart by adding SampleDataSeries objects to SampleDataSeries list.

chart.ViewXY.SampleDataSeries.Add(sampleDataSeries); //Add a SampleDataSeries

to the chart

Figure 6-46. Some sample data series.

Sample interval = 1 / SamplingFrequency

Just Y values are stored in SamplesSingle or SamplesDouble array
 => Very compact memory footprint

VERY FAST TO RENDER

SampleDataSeries - for fixed interval progressing data

FirstSampleTimeStamp

X

Samples[0]

Samples[1]

Samples[2]

Samples[3]

Samples[4]

Samples[5]

Samples[6]

Samples[7]

Samples[8]

Samples[9]

Samples[10]

Samples[11]

Samples[12]

Samples[13]

100 LightningChart® .NET User’s Manual, rev. 10.5

SampleDataSeries is the line series used for presenting sampled signal data (discrete signal data). This

is generally used in real-time DSP applications. Visually, it is similar to PointLineSeries, so all line and

point formatting options apply. As SampleDataSeries has a fixed sample interval, there’s no need to

reserve memory to store point X values.

Note! SampleDataSeries does not resample or down-sample the given data. All given data values are

retained in the SamplesSingle or SamplesDouble arrays. LightningChart does not reduce the quality of

the data or lose peaks or accuracy of the data.

 Y precision

The SampleDataSeries supports single and double precision sample Y values. Using single precision

values is recommended when keeping the memory reserving as low as possible. Select the sample

format with SampleFormat property.

Use the series SamplingFrequency (1 / sample interval) to set the fixed sample interval. To set the X

value (time stamp) where the samples begin, set FirstSampleTimeStamp property.

 Adding points

The samples must be added in code. Use AddSamples method to add samples to the end of existing

samples.

chart.ViewXY.SampleDataSeries[0].AddSamples(samplesArray, false);

// Add samples to the end

To set whole series data at once, and overwrite old samples, assign the new samples array directly:

If SampleFormat is SingleFloat
chart.ViewXY.SampleDataSeries[0].SamplesSingle = samplesSingleArray;

Or if SampleFormat is DoubleFloat
chart.ViewXY.SampleDataSeries[0].SamplesDouble = samplesDoubleArray;

6.9 SampleDataBlockSeries

SampleDataBlockSeries is a version of SampleDataSeries, fully optimized for real-time applications. It

offers the best possible performance with least CPU and memory consumption, allowing rendering

extremely high number of data points simultaneously. As the name of the series suggests, the data is

internally managed as blocks, which in turn are individually memory-managed. This removes the need

for extremely large continuous linear memory. SampleDataBlockSeries is the optimal series type for real-

time medical monitoring applications, such as ECG/EKG, EEG, industrial monitoring applications,

telemetry, and waveform vibration monitoring.

Copyright LightningChart Ltd 2009-2023 101

SampleDataBlockSeries works almost similarly to SampleDataSeries. It likewise requires the added data

to be in progressive order and to have a fixed data interval. SamplingFrequency (1 / sample interval)

can be used to set the fixed sample interval. To set the X value (time stamp) where the samples begin,

set FirstSampleTimeStamp property. However, visually SampleDataBlockSeries has fewer formatting

options compared to other line series. Color and Width properties are available to change the color and

width of the line respectively. Furthermore, SampleDataBlockSeries shows only the line, not individual

points.

New samples can be added in code by using AddSamples method. Unlike SampleDataSeries,

SampleDataBlockSeries accepts only float values. PointCount property can be used to get the current

number of samples in the series.

// Add samples to the end.

sampleDataBlockSeries.AddSamples(samplesArray, false);

// Get the total number of samples.

int samplesCount =_chart.ViewXY.SampleDataBlockSeries[0].PointCount;

Figure 6-47. Several SampleDataBlockSeries in a real-time application.

102 LightningChart® .NET User’s Manual, rev. 10.5

6.10 DigitalLineSeries

DigitalLineSeries is a specific type of line series, which displays a line alternating between two Y-values,

for example 0 and 1. It is fully optimized for performance and uses the least amount of memory of all

series types. DigitalLineSeries has fewer configuration option compared to many other series, as it draws

only the line between the data points but not the points themselves. Furthermore, it has only Color and

Width properties to adjust the series appearance.

DigitalLineSeries data points are always in progressive order with fixed intervals. FirstSampleTimeStamp

property sets the X-value of the first data point, while SamplingFrequency control the interval between

the points. Use DigitalHigh and DigitalLow to set the Y-values the line is alternating between. The data

points are added via AddBits() method as arrays of type uint[]. Each value in the array is converted to

respective binary value, thus representing 32 data points. BitCount property can be used to check the

total number of added points.

// Adding a DigitalLineSeries.

DigitalLineSeries dls = new DigitalLineSeries(_chart.ViewXY,

_chart.ViewXY.XAxes[0], _chart.ViewXY.YAxes[0]);

dls.Color = Colors.Yellow;

dls.Width = 2;

dls.FirstSampleTimeStamp = 0;

dls.DigitalLow = 0;

dls.DigitalHigh = 1;

dls.SamplingFrequency = 32;

uint[] data = new uint[] { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,

0x00000000, 0xa54df810, 0x00000000, 0xFFFFFFFF };

dls.AddBits(data, false);

_chart.ViewXY.DigitalLineSeries.Add(dls);

Figure 6-48. DigitalLineSeries based on the code above.

Copyright LightningChart Ltd 2009-2023 103

6.11 FreeformPointLineSeries

Demo examples: Scatter points; Map route; Value tracking with markers; Curve node editing

 Figure 6-49. Overview of FreeformPointLineSeries

A FreeformPointLineSeries can present a simple line, points (scatter) or both as a point line.

FreeformPointLineSeries allows drawing line point to any direction from previous point. All line and point

formatting options from PointLineSeries apply. Add the series to chart by adding

FreeformPointLineSeries objects to FreeformPointLineSeries list.

// Add a FreeformPointLineSeries to the chart

chart.ViewXY.FreeformPointLineSeries.Add(freeformPointLineSeries);

Figure 6-50. A freeform point line series

X values can be in any order

FreeformPointLineSeries - for arbitrary data

X

Points[0]

Points[1]
Points[2]

Points[3]

Points[4]
Points[5]

Points[6]

Points[7]

Points[8]

Points[9]

Points[10] Points[11]

Points[12]

Points[13]

HEAVY TO RENDER WHEN POINT COUNT IS VERY HIGH

104 LightningChart® .NET User’s Manual, rev. 10.5

Freeform point line series line points are not automatically destroyed even if DropOldSeriesData is

enabled, and the points are scrolled out of current view. To automatically destroy old series points in

real-time monitoring solution, use point count limiter. Set PointCountLimitEnabled = true and set the

limit to PointCountLimit property. If limiter is enabled, the Points array behaves as a ring buffer after

the point count limit has been reached. The oldest point from Points array can always be found by

retrieving value from OldestPointIndex. If needing to read the existing data out of point count limited

buffer, use the following method:

• If OldestPointIndex is 0, read from Points[0] till Points[PointCount-1].

• If OldestPointIndex > 0, first read from Points[OldestPointIndex] till Points[PointCountLimit-1].

Then, read from Points[0] till Points[OldestPointIndex-1].

To directly retrieve the last series point, call GetLastPoint() method.

6.12 LiteFreeformLineSeries

LiteFreeformLineSeries is a lighter version of FreeformPointLineSeries, that is optimized for much faster

performance. However, compared to the regular series, it has less configuration options.

LiteFreeformLineSeries draws only the line between the data points but not the points themselves and

therefore is not suitable for scatter plots. Furthermore, it has only Color and Width properties to adjust

the series appearance. LiteFreeformLineSeries allows data points to be placed freely. In other words, the

points don’t have to be in progressive order.

Use AddPoints() method to add data point arrays to the series. These arrays should be of type double[,]

where the first value is the data point index while the second value has both X-and Y-values

ActualPointCount() can be called to find out the total number of points.

// Adding a LiteFreeformLineSeries with random data points.

LiteFreeformLineSeries flls = new LiteFreeformLineSeries(_chart.ViewXY,

_chart.ViewXY.XAxes[0], _chart.ViewXY.YAxes[0]);

flls.Color = Colors.Red;

flls.Width = 3;

double[,] values = new double[21, 2];

for (int i = 0; i < 21; i++)

{

 values[i, 0] = rand.NextDouble() * 20;

 values[i, 1] = rand.NextDouble() * 100;

}

flls.AddPoints(values, false);

_chart.ViewXY.LiteFreeformLineSeries.Add(flls);

Copyright LightningChart Ltd 2009-2023 105

6.13 Which line series should be used?

Choosing the line series depends on three main questions: how many data points should be shown

simultaneously, what is the nature of the data points a.k.a are the points in progressive order with fixed

intervals, and how the line should look visually.

The number of data points / performance

Performance-wise it is very important to use the correct series type. For instance, using a

FreeformPointLineSeries in a real-time application is significantly heavier compared to

SampleDataBlockSeries.

- If the total number of data points is low (< 1000), the series type has no noticeable effect

on performance.

- In real-time applications, use the fastest line series possible based on the nature of the

data points.

The performance order of the series from the fastest to render to the heaviest is:

- DigitalLineSeries

- SampleDataSeries / SampleDataBlockSeries

- PointLineSeries / LiteLineSeries

- FreeformPointLineSeries / LiteFreeformLineSeries

The nature of data points

The nature of data points directly affects what series types can be used.

- If the X-values of the points are not in progressive order, use FreeformPointLineSeries or

LiteFreeformLineSeries.

- If the X-values are progressive but the intervals between the points vary, use

PointLineSeries or LiteLineSeries.

- If the X-values are progressive with fixed data point intervals, use SampleDataSeries,

SampleDataBlockSeries or DigitalLineSeries.

- If the Y-values of the data alternate between two values, consider using

DigitalLineSeries.

Visual appearance

In most cases, there are two versions of the same series type, for instance PointLineSeries and

LiteLineSeries. Choosing one or the other comes to a tradeoff between the performance and being able

to fully modify the visual appearance of the series. In general, all the “lite” series types are faster to

render and use less memory but have less configuration options.

- If data points themselves should be rendered, not just the line, use regular series as “lite”

series draws only the line.

- If modifying the color and the width of the line is enough, use “lite” version of the series.

106 LightningChart® .NET User’s Manual, rev. 10.5

Features

Sam
p

leD
ataB

lo
ckSeries

Sam
p

leD
ataSeries

Lite
Lin

eSeries

P
o

in
tLin

eSeries

Lite
Freefo

rm
Lin

eSeries

Freefo
rm

P
o

in
tLin

eSeries

A
reaSeries

H
igh

Lo
w

Series

D
igitalLin

eSeries

Lin
eC

o
llectio

n

Progressive increase of X-values       
Fixed interval  

Optimized memory and GC usage    

Line Visible          
Points Visible     

Coloring points individually    

Y precision is double type        

Y precision is float type  

Y-value based coloring of
line/area

     

Custom shaping and coloring   

XAxis ScaleBreaks          

DataBreaking by NaN or other
value

     

ClipAreas          

Tracking value with
LineSeriesCursor

      

Tracking with DataCursor       

  

Polynomial regression 

LimitYToStackSegment          

Line Pattern      

Series TitlesAutoPlacement          

Rendering data into the
PersistentSeriesRenderingLayer




  

ErrorBars




Figure 6-51. Table of all features available for each series type.

Copyright LightningChart Ltd 2009-2023 107

6.14 Advanced line coloring of line series

Demo examples: Line, palette coloring; Line, event-based coloring by indices; Line, event-based coloring

The line color can be changed based on data values, or on other external logic.

 Y-value based coloring of line and fill with value-range palette

By enabling UsePalette property of SampleDataSeries, PointLineSeries or FreeformPointLineSeries,

the coloring of line is applied by the ValueRangePalette property. ValueRangePalette contains Y

values and color pairs. ValueRangePalette.Type sets the Gradient or Uniform steps palette.

The palette coloring can be set for Y axis line too. Enable UsePalette property of Y axis and assign the

preferred series in PaletteSeries property.

Figure 6-52. On the left, a Gradient palette is used to color the line based on Y values. On the right, a Uniform palette is
used. UsePalette is enabled for Y-axis as well.

Figure 6-53. Gradient palette coloring for bipolar signal data. UsePalette for Y-axis is disabled.

108 LightningChart® .NET User’s Manual, rev. 10.5

 Custom shaping and coloring with CustomLinePointColoringAndShaping event

Custom coloring and coordinate adjustment can be made with

CustomLinePointColoringAndShaping event, which is called just before entering the rendering

stage of the chart. Custom coloring is available with all line patterns (Dash, Dot etc.). However,

gradient coloring can only be applied when LineStyle.Pattern = Solid. The event also has serious

limitations in vector file exports.

Figure 6-54. CustomLinePointColorAndShaping event handler used to change the line color by the specific changing
reference level.

The event arguments have the following info:

• CanModifyColors: Colors modification is available.

• Colors: Prefilled colors array with LineStyle color. If CanModifyColors is true, modifications can

be done either by assigning new values to prefilled colors, or by creating a new colors array. If

CanModifyColors is false, don’t fill them.

• CanModifyCoords: Coordinates modification is available.

• Coords: Pre-filled screen coordinates array. If CanModifyCoords is true, modifications can be

done either by assigning new values to prefilled coordinates, or by creating a new coordinates

array. The new array length doesn’t have to be equal to prefilled one. Ensure the length of the

Coords and Colors array are equal when exiting the event handler. If CanModifyCoords is false,

don’t fill them.

• HasDataPointIndices: Only applicable in FreeformPointLineSeries.

• DataPointIndices: Data point indices included in the coordinate and color arrays. Subsequent

points are skipped in line construction if their X and Y values or coordinates are equal. Using

DataPointIndices info, e.g. a color can be picked for a line point from data point’s PointColor field

or external color array.

• SweepPageIndex: If XAxis.ScrollMode = ‘Sweeping’, tells the page index (0 or 1).

Copyright LightningChart Ltd 2009-2023 109

6.15 Polynomial regression

Demo examples: Regression Fit, Spline Line

Regression fitting for data points is only available for PointLineSeries. RegressionFitting for the series

allows choosing between line fit and polynomial fit. In the latter case, RegressionPolyOrder can be used

to set the degree of the regression. When RegressionFitting is set other than None option, line and points

are replaced with fitted curve.

For other series it is possible to use MathRoutines.PolynomialRegression() method and replace data

with fitted points.

6.16 High-lowSeries

Demo examples: High-Low; Stacked area; Stock course with previous close; Areas /high-lows; Scale breaks

High-low series presents data as filled area between high and low values. Add the series to chart by

adding HighLowSeries objects into HighLowSeries list.

//Add high-low series to the chart
chart.ViewXY.HighLowSeries.Add(highlowSeries);

Figure 6-55. A high-low series with a marker over it.

110 LightningChart® .NET User’s Manual, rev. 10.5

 Fill, line and point styles

The fill can be set with Fill property and its sub-properties. Define the line style with LineStyleHigh and

LineStyleLow properties. If the lines should not be visible, set LineVisibleHigh = false, and

LineVisibleLow = false, respectively. Define the point style with PointStyleHigh and PointStyleLow

properties. If the points should not be shown, set PointsVisibleHigh = false, PointsVisibleLow = false

See chapters 6.6.1 and 6.6.2 for line and point style details. When the high value of the data is less than

its Low value, reverse fill is applied in that part. Edit the reversed fill with ReverseFill property.

Figure 6-56. Fourth data item is given reversed: high value is < low value.

 Limits

By enabling UseLimits, series shows different solid coloring above the exceed limit and below deceed

limit. The regular Fill and ReverseFill apply then only for the range between the limits.

Copyright LightningChart Ltd 2009-2023 111

Figure 6-57. UseLimits = true, ExceedLimit = 48000 and DeceedLimit = 28000.

 Coloring by value-range palette

By enabling UsePalette, the fill uses ValueRangePalette steps. Uniform and Gradient coloring are both

supported.

Figure 6-58. UsePalette = True, several steps defined in ValueRangePalette. Uniform coloring.

112 LightningChart® .NET User’s Manual, rev. 10.5

 Adding data

The data values must be added in code. The data must be given in ascending order by X values,
Points[i+1].X ≥ Points[i].X.

Use AddValues(HighLowSeriesPoint[], bool invalidate) method to add data values to the end of existing

values array.

HighLowSeriesPoint[]dataArray = new HighLowSeriesPoint[6];

dataArray [0] = new HighLowSeriesPoint(2004, 37000, 22000);

dataArray [1] = new HighLowSeriesPoint(2005, 35000, 27000);

dataArray [2] = new HighLowSeriesPoint(2006, 47000, 25000);

dataArray [3] = new HighLowSeriesPoint(2007, 37000, 49000);

dataArray [4] = new HighLowSeriesPoint(2008, 40000, 50000);

dataArray [5] = new HighLowSeriesPoint(2009, 56000, 56000);

//Add data to the end

chart.ViewXY.HighLowSeries[0].AddValues(dataArray, true);

To set whole series data at once while overwriting old data, assign the new data array directly:

//Assign the data into points array

chart.ViewXY.HighLowSeries[0].Points = dataArray;

Copyright LightningChart Ltd 2009-2023 113

6.17 AreaSeries

Demo examples: Area; Areas; Data breaking in series; Multiple legends; Custom axis ticks

Area series presents data as filled area between base level and values. Area series is quite similar to

HighLowSeries described in chapter 6.16, but simpler. Add the series to chart by adding AreaSeries

objects into AreaSeries list.

chart.ViewXY.AreaSeries.Add(areaSeries); //Add area series to the chart

Figure 6-59. Three area series all having BaseValue = 0.

Set base level with BaseValue property. Set the preferred fill style with Fill property. Line style can be

set with LineStyle property and point style with PointStyle property respectively. Exceed and deceed

limits can be used like in HighLowSeries.

 Adding data

The data values must be added in code. The data must be given in ascending order by X values,
Points[i+1].X ≥ Points[i].X.

114 LightningChart® .NET User’s Manual, rev. 10.5

Use AddValues(AreaSeriesPoint[], bool invalidate) method to add data values to the end of existing

values array.

AreaSeriesPoint[] dataArray = new AreaSeriesPoint[6];

dataArray [0] = new AreaSeriesPoint (2004, 37000);

dataArray [1] = new AreaSeriesPoint (2005, 35000);

dataArray [2] = new AreaSeriesPoint (2006, 47000);

dataArray [3] = new AreaSeriesPoint (2007, 37000);

dataArray [4] = new AreaSeriesPoint (2008, 40000);

dataArray [5] = new AreaSeriesPoint (2009, 56000);

//Add data to the end

chart.ViewXY.AreaSeries[0].AddValues(dataArray, true);

To set whole series data at once while overwriting old data, assign the new data array directly:

//Assign the data into points array

chart.ViewXY.AreaSeries[0].Points = dataArray;

6.18 BarSeries

Demo examples: Vertical; Horizontal; Negative values; Stacked Bars

BarSeries allows displaying data in horizontal or vertical bars.

Figure 6-60. Bars series, vertical and horizontal.

Use Values array property to store the values of a bar series. Add values with AddValue(…) method.

Update an existing value by given value index with SetValue(…) method. The values are of type

BarSeriesValue, which has the following fields:

• Value The bar length.

• Location X axis location of the bar (vertical presentation) or Y axis location (horizontal

 presentation).

• Text The text that appears in the bar.

Copyright LightningChart Ltd 2009-2023 115

Use LabelStyle property of a bar series to control how the bar value label appears on the chart. The label

value text is set by AddValue(…) or SetValue(…) method parameter. Various fill styles can be used by

setting Fill property and its sub-properties.

Use BarViewOptions property of the chart to control how the bars are displayed.

BarViewOptions.Orientation to selects between Horizontal and Vertical bar orientation.

BarViewOptions.Grouping allows grouping the bars by value indices, by indices using width fitting or by

location values. It brings values from different bar series visually together. If no grouping is wanted, use

BarViewOptions.Grouping.ByLocation and set different Location field for every BarSeriesValue object.

Use width fitting properties to adjust the spaces between columns and aside them. When no width fitting

is used, BarThickness property of the bar series determines the bar width. The groups can be stacked by

setting BarViewOptions.Stacking to Stack or to StackStretchToSum. When using StackStretchToSum,

define the target sum by setting StackSum property. It is 100 by default to represent 100 %.

Figure 6-61. Bars series Grouping = ByIndex, Stacking = None.

Figure 6-62. Bars series Grouping = ByIndex, Stacking = Stack.

116 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-63. Bars series Grouping = ByIndex, Stacking = StackStretchToSum. StackSum = 100.

BaseLevel property in BarSeries is the series minimum value for all values and sets bar start position. In

Stacked view, it will increase (if positive) or decrease (if negative) the size of the bar. If StackedToSum,

the bar size is relative and calculated like Stacked.

 Figure 6-64. BaseLevel set to -10. Bar values are 10, 20, 35, 50, 58, 45, 30, 25, 20, 5.

Copyright LightningChart Ltd 2009-2023 117

6.19 StockSeries

Demo examples: Segments with splitters; Stocks and bars; Scale breaks; Statistic analytics

Stock series allow stock exchange data visualization in candle-stick or stock bars format. Several stock

series can be added in the same chart by adding multiple StockSeries objects in StockSeries list property.

Select the style with Style property. The options are Bars, CandleStick and OptimizedCandleStick.

OptimizedCandleStick is used by default for performance reasons, starting from v.8.4. However,

OptimizedCandleStick has only limited set of fill effects available - it supports Solid and left-to-right

direction Linear fill. Set Style to CandleStick for more advanced appearance options, including Bitmap,

Radial, RadialStretched and Cylindrical fills and borders for the candles (FillBorder property). For

maximum rendering performance, use Bars style, with StickWidth = 1.

Set the coloring and filling options with ColorStickDown, ColorStickUp, FillDown and FillUp properties.

Adjust the stick width in pixels with StickWidth property, and the total data item width with ItemWidth

property. StockSeries can be set to render before the line series, by setting Behind = True.

// Modifying StockSeries properties.

stockSeries.Style = StockStyle.OptimizedCandleStick;

stockSeries.ItemWidth = 13;

stockSeries.StickWidth = 3;

stockSeries.Behind = false;

StockSeries also has data Packing property, which when enabled, causes data values close to each other

be packed to a single rendered item. This improves performance, especially with larger data sets, but

the data might not be as accurate as without packing.

// Enabling data packing.

stockSeries.Packing = StockSeriesPacking.On;

Figure 6-65. StockSeries with CandleStick Style. A light blue PointLineSeries is set to go through all Close values.

118 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-66. StockSeries with Bars Style. Line series are used for showing linear regression fit and offset of that line (2 *
standard deviation). A band is used for selecting a date range for line fit.

 Setting data to StockSeries

Create a data array and set the array items. Each item has the following fields:

Date DateTime value (year, month, day)
Open Opening value of the day
Close Close value of the day
Low The lowest value during day
High The highest value during day
Transaction The total trading sum (optional)
Volume Count of shares traded (optional)

Keep the data always in ascending order by Date value (oldest date first).

// Create data array

StockSeriesData[] data = new StockSeriesData[] {

 new StockSeriesData(2010,09,01, 24.35, 24.76, 24.81, 23.82,

 269210, 6610451.55),

 new StockSeriesData(2010,09,02, 24.85, 24.66, 24.85,

 24.53, 216395, 5356858.225),

 new StockSeriesData(2010,09,03, 24.80, 24.84, 25.07,

 24.60, 164583, 4084950.06),

new StockSeriesData(2010,09,06, 24.85, 25.01, 25.12,

 24.84, 118367, 2950889.31)

 };

 // Assign the data array to series

 chart.ViewXY.StockSeries[0].DataPoints = data;

Copyright LightningChart Ltd 2009-2023 119

 Setting X axis to date display

chart.ViewXY.XAxes[0].ValueType = AxisValueType.DateTime;
chart.ViewXY.XAxes[0].LabelsAngle = 90;

chart.ViewXY.XAxes[0].LabelsTimeFormat =

 System.Globalization.CultureInfo.CurrentCulture.DateTimeFormat

.ShortDatePattern;
chart.ViewXY.XAxes[0].MajorDiv = 24 * 60 * 60; // Major division is one day

in seconds

chart.ViewXY.XAxes[0].AutoFormatLabels = false;

// Set datetime origin

chart.ViewXY.XAxes[0].DateOriginYear = data[0].Date.Year;

chart.ViewXY.XAxes[0].DateOriginMonth = data[0].Date.Month;

chart.ViewXY.XAxes[0].DateOriginDay = data[0].Date.Day;

Set the X axis range suitable for data:

// X-axis stretched half a day at both ends. Use first and last date value.

chart.ViewXY.XAxes[0].SetRange(

 chart.ViewXY.XAxes[0].DateTimeToAxisValue(data[0].Date) - 12 * 60 * 60,

chart.ViewXY.XAxes[0].DateTimeToAxisValue(data[data.Length - 1].Date) +

12 * 60 * 60);

 Custom formatting of appearance

The StockSeries has CustomStockDataAppearance event handler, which can be used to format

appearance of series data items individually, overriding the generic fill and color styles applied with

properties. In the event handler, modify width and colors for specific points.

Figure 6-67. CustomStockDataAppearance used to highlight specific data items with greater width and brighter gradient
colors.

120 LightningChart® .NET User’s Manual, rev. 10.5

 Applying Scale breaks

To cut off non-trading hours and days, see 6.3.2.

6.20 PolygonSeries

Demo examples: Polygons; Box-whisker plot; Ternary plot; Image viewer; Zoomable 2D pie

PolygonSeries renders a fill and a borderline, by given border path.

Set the filling preferences in Fill property. Use Border property of PolygonSeries to set the border line

style.

Figure 6-68. Several polygons.

 Setting data to a Polygon

Set the path points in Points property. PolygonSeries has an automatic path closing feature. If the

last point is not connected to the first point, the chart will do that automatically.

The following shows how to assign the points of the previous picture’s transparent teal polygon’s

path:

Copyright LightningChart Ltd 2009-2023 121

polygon.Points = new PointDouble2D[] {

 new PointDouble2D(7,12),
 new PointDouble2D(6,9.5),
 new PointDouble2D(7.5,5),
 new PointDouble2D(10,6),
 new PointDouble2D(9,11)};

 Enabling complex / intersecting fills

Set IntersectionsAllowed = True to enable polygon path to intersect itself. Without this property

enabled, when intersecting the path, the fill will appear all garbled up. By default, the property is False

for performance reasons, as detecting and rendering intersection cases is heavy.

Figure 6-69. Polygon with intersecting path, with IntersectionsAllowed = True.

6.21 LineCollections

Demo examples: Line Collections; Line spectrogram; Stem plot

A LineCollection is a collection of line segments. Each line segment is a line going from point A to B. One

LineCollection can contain thousands of line segments. LineCollection is extremely efficient in rendering

of thousands of distinct line segments, in contrast to PointLineSeries, FreeformPointLineSeries or

SampleDataSeries. PointLineSeries, FreeformPointLineSeries or SampleDataSeries are more efficient in

rendering continuous polylines of millions of points.

122 LightningChart® .NET User’s Manual, rev. 10.5

Use LineStyle property to control the line color, style and width. Set the line segments in Lines property.

Add the LineCollection object in ViewXY.LineCollections list property.

Figure 6-70. Three LineCollections in use. Green acts as very rapidly rendering bars, yellow as a polyline, and red as an
arbitrary triangle wireframe mesh.

 Setting data to a LineCollection

SegmentLine structure consists of four fields:

AX Start point, X

AY Start point, Y

BX End point, X

BY End point, Y

Add the SegmentLines array to Lines property as follows:

lineCollection.Lines = new SegmentLine[] {
 new SegmentLine(6,25,8,30),
 new SegmentLine(8,30,7,40),
 new SegmentLine(7,40,10,40),
 new SegmentLine(10,40,12,28) };

 Solving individual segments

GetSegmentsAtPoint() method allows checking which individual segment line is at given position, for

example under mouse coordinates. It returns a list of integers (segment line indexes).

List<int> list = _chart.ViewXY.LineCollections[0].GetSegmentsAtPoint(xCoordinate,

yCoordinate);

Copyright LightningChart Ltd 2009-2023 123

6.22 IntensityGridSeries

Demo examples: Heat map; Spectrogram; Intensity grid mouse control

IntensityGridSeries allows visualizing M x N array of nodes, colored by assigned value-range palette. The
colors between nodes are interpolated. IntensityGridSeries is an evenly-spaced, rectangular series in X
and Y dimension. This series allows rendering contour lines, contour line labels, and wireframe as well.

Figure 6-71. IntensityGridSeries properties.

124 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-72. IntensityGrid series showing a heat map presentation. Legend box shows the value-range color palette.

The data is stored in Data property as two-dimensional array. Each array item is of type IntensityPoint.

Store the data value of each node in Value field of IntensityPoint structure, which tells what color should

be used from the ValueRangePalette.

Figure 6-73. IntensityGridSeries nodes. SizeX = 5, SizeY = 7.

RangeMinX RangeMaxX

row0

RangeMaxY

RangeMinY

row1

row2

row3

row4

row5

row6

col0 col1 col2 col3 col4

Copyright LightningChart Ltd 2009-2023 125

Node distances are automatically calculated as

𝑛𝑜𝑑𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋 =
RangeMaxX − RangeMinX

SizeX − 1

𝑛𝑜𝑑𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑌 =
RangeMaxY − RangeMinY

SizeY − 1

 Setting intensity grid data

• Set X range by using RangeMinX and RangeMaxX properties, to order the minimum and maximum value

of assigned X axis.

• Set Y range by using RangeMinY and RangeMaxY properties, to order the minimum and maximum value

of assigned Y axis.

• Set SizeX and SizeY properties to give the grid a size as columns and rows.

• Set Value for each node:

Method, with Data array index

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)

{

 for (int nodeIndexY = 0; nodeIndexY < rowCount; nodeIndexY ++)

 {

 intensityValue =//some height value.

 gridSeries.Data[iNodeX, iNodeY].Value = intensityValue;

 }

}

 gridSeries.InvalidateData(); //Notify new values are ready and to refresh

Alternative method, usage of SetDataValue

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)

{

 for (int nodeIndexY = 0; nodeIndexY < rowCount; nodeIndexY ++)

 {

 intensityValue =//some height value

 gridSeries.SetDataValue(nodeIndexX, nodeIndexY,

 0, //X value ís irrelevant in grid

0, //Y value is irrelevant in grid

intensityValue,

Color.Green); //Source point colors are not used in this

example, so use any color here

 }

}

 gridSeries.InvalidateData(); //Notify new values are ready and to refresh

126 LightningChart® .NET User’s Manual, rev. 10.5

Setting Values only to existing grid

When the geometry of IntensityMesh, or SizeX or SizeY for IntensityGrid series doesn’t change while data

is changing rapidly, it is most advantageous to use SetValuesData method. Since it accepts Double[][]

format data array, scrolling or re-ordering rows or columns is quick. Especially when combined with

PixelRendering property (see 6.22.4), it is a very effective approach for high-resolution scrolling

spectrogram visualization. Note that when PixelRendering is disabled with external data array set by

SetValuesData, Data property can’t be null.

Setting Colors only to existing grid

When the geometry of IntensityMesh, or SizeX or SizeY for IntensityGrid series doesn’t change while data

is changing rapidly, it is most advantageous to use SetColorsData method. It accepts int[][] format values,

i.e. ARGB values that GPU accepts directly. With this kind of data array, scrolling or re-ordering rows or

columns is quick. Especially when combined with PixelRendering property (see 6.22.4), it is a very

effective approach for high-resolution scrolling spectrogram visualization. Note that when

PixelRendering is disabled with external data array set by SetColorsData, Data property can’t be null.

 Creating intensity grid data from bitmap file

Demo examples: Heat map

Create a surface from a bitmap image. Use SetHeightDataFromBitmap method to achieve this. The

series Data array property gets the size of the bitmap size (if no anti-aliasing or resampling is used).

For each bitmap image pixel, Red, Green and Blue values are summed. The greater the sum, the

greater will be the data value for that node. Black and dark colors get lower values and bright and

white colors get higher values.

Figure 6-74. Source bitmap and calculated intensity values data. Dark values stay low and bright values get higher values.

Copyright LightningChart Ltd 2009-2023 127

 Fill styles

Use Fill property to select the filling style. The following options are available

• None: By using this, no filling is applied. This is the selection to use with wireframe mesh or plain

contour lines.

• FromSurfacePoints: The colors of the Data property nodes are used.

• Toned: ToneColor applies

• Paletted: See chapter 6.16.5.

Enable FullInterpolation property to use enhanced interpolation method in the fill. Note that it will

cause more CPU and GPU usage. By using full interpolation, the fill quality is better, but can be seen

only when the data array size is quite small.

 Rendering as pixel map

By enabling PixelRendering property, the nodes are rendered as pixels, or rectangles. This is a very high-

performance rendering style e.g. for real-time high-resolution thermal imaging applications. Note that

when this rendering mode is selected, many other options are disabled, such as contour lines, wireframe

and interpolation. If logarithmic axes are used, the logarithmic transformation is only applied to corners

of the series, the pixels in the bitmap remain evenly spaced and no logarithmic transformation is applied

to them.

Figure 6-75. PixelRendering = true.

128 LightningChart® .NET User’s Manual, rev. 10.5

 ValueRangePalette

With ValueRangePalette property, define color steps for value coloring. ValueRangePalette can be used

for:

• Fill (see chapter 6.22.3)

• Wireframe (see chapter 6.22.6)

• Contour lines (see chapter 6.22.7)

Define several steps for contour palette. Each step has a height value and the corresponding color.

Note! 20 steps are precompiled and loaded fast. With higher step counts, several seconds delay can be

expected when initializing the chart.

Figure 6-76. On the left, IntensityGridSeries Fill is set to Paletted and Palette Type is set to Gradient. On the right, Palette
Type is set to Uniform.

The palette is defined with MinValue, Type and Steps properties. For Type, there are two choices:

Uniform and Gradient. The contour palettes (check the legend boxes) of the previous figures show:

• MinValue: -50

• Type: Uniform

• Steps:

• Steps[0]: MaxValue: -10, Color: Blue

• Steps[1]: MaxValue: 10, Color: Teal

• Steps[2]: MaxValue: 25, Color: Green

• Steps[3]: MaxValue: 35, Color: Yellow

• Steps[4]: MaxValue: 60, Color: Red

• Steps[5]: MaxValue: 100, Color: White

The values below the first step value are colored with the first step’s color.

Copyright LightningChart Ltd 2009-2023 129

 Wireframe

Use WireframeType to select the wireframe style. The options are:

• None: no wireframe

• Wireframe: a solid color wireframe. Use WireframeLineStyle.Color to set the color

• WireframePaletted: the wireframe coloring follows ValueRangePalette (see chapter 6.16.5)

• WireframeSourcePointColored: the wireframe coloring follows the color of grid nodes

• Dots: solid color dots are drawn in the grid node positions

• DotsPaletted: dots are drawn in the grid node positions and colored by ValueRangePalette

• DotsSourcePointColored: dots are drawn in the grid node positions, coloring follows the color of

grid nodes

The wireframe line style (color, width, pattern) can be edited by using WireframeLineStyle.

Note! Palette colored wireframe lines and dots are available only when WireframeLineStyle.Width

= 1 and WireframeLineStyle.Pattern = Solid.

 Contour lines

Demo examples: Heatmap color spread; Contours with labels

Contour lines can be used with fill and wireframe properties. By setting ContourLineType property,

contour lines can be drawn with different styles:

• None: no contour lines are shown

• FastColorZones: The lines are drawn as thin zones on palette step end. Allows very powerful

rendering, which suits very well for continuously updated or animated surface. Steep value

changes are shown as thin line, while gently sloping height differences are shown with thick zone.

Each line uses the same color defined with ContourLineStyle.Color property. The zone width can

be set by FastContourZoneRange property. The value is in Y axis range.

• FastPalettedZones: Like FastColorZones, but line coloring follows ValueRangePalette options

(see chapter 6.22.5).

• ColorLine: Like FastColorZones, but the contour lines are actual lines. Rendering takes longer and

is not recommended for continuously updated or animated surface. The line width can be

adjusted with ContourLineStyle.Width property.

• PalettedLine: Like ColorLine, but line coloring follows ValueRangePalette options.

130 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-77. On the top-left, ContourLineType = FastColorZones. On the top-right, ContourLineType = FastPalettedZones.
On the bottom -left, ContourLineType = ColorLine. On the bottom-right, ContourLineType = PalettedLine

Copyright LightningChart Ltd 2009-2023 131

 Contour line labels

When contour lines are visible, numeric values can be shown within the line paths.

Figure 6-78. The properties of ContourLineLabels and the result

Use LabelsNumberFormat for custom string formatting, for example setting the number of decimals.

6.23 IntensityMeshSeries

Demo examples: Animated intensity mesh; Intensity mesh, static geometry; Intensity mesh, circle/polar

geometry

IntensityMeshSeries is almost similar to IntensityGridSeries. The biggest difference is that series nodes

can be positioned arbitrarily in X-Y space. In other words, the series does not have to be rectangular.

Wireframe lines can be set visible with WireframeType property, and nodes can be shown by setting

ShowNodes true.

132 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-79. IntensityMeshSeries with freely positioned X and Y values for each node. WireframeType = Wireframe and
ShowNodes = true.

Figure 6-80. Intensity mesh nodes. SizeX = 4, SizeY =4.

row0

row1

row2

row3

col0 col1 col2 col3

Copyright LightningChart Ltd 2009-2023 133

 Setting intensity mesh data, when geometry changes

Follow these instructions, when the X, Y and Value fields are updated in the same time.

• Set SizeX and SizeY properties to give the mesh a size as columns and rows.

• Set X, Y and Value for all nodes:

Method, with Data array index

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)

{

 for (int nodeIndexY = 0; nodeIndexY < rowCount; nodeIndexY ++)

 {

 meshSeries.Data[nodeIndexX, nodeIndexY].X = xValue;

 meshSeries.Data[nodeIndexX, nodeIndexY].Y = yValue;

 meshSeries.Data[nodeIndexX, nodeIndexY].Value = value;

 }

}

 meshSeries.InvalidateData(); //Notify new values are ready to refresh

Alternative method, usage of SetDataValue

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)

{

 for (int nodeIndexY = 0; nodeIndexY < rowCount; nodeIndexY ++)

 {

 meshSeries.SetDataValue(nodeIndexX, nodeIndexY,

 xValue,

 yValue,

value,

Color.Green); //Source point colors are not used in this

example, so use any color here

 }

}

 meshSeries.InvalidateData(); //Notify new values are ready to refresh

 Setting intensity mesh data, when geometry does not change

Follow these instructions, when only the Value fields of Data array IntensityPoint structures are updated.

This is the performance optimized way for updating data for example in thermal imaging or

environmental data monitoring solutions, where X and Y values of each node stay at the same location.

134 LightningChart® .NET User’s Manual, rev. 10.5

6.23.2.1 Creating the series and its geometry

• Set Optimization to DynamicValuesData

• Set SizeX and SizeY properties to give the mesh a size as columns and rows.

• Set X, Y and Value for all nodes:

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)

{

 for (int nodeIndexY = 0; nodeIndexY < rowCount; nodeIndexY ++)

 {

 meshSeries.Data[nodeIndexX, nodeIndexY].X = xValue;

 meshSeries.Data[nodeIndexX, nodeIndexY].Y = yValue;

 meshSeries.Data[nodeIndexX, nodeIndexY].Value = value;

 }

}

 meshSeries.InvalidateData(); //Rebuild geometry from nodes and repaint

6.23.2.2 Updating the values periodically

• Set only values for all nodes:

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)

{

 for (int nodeIndexY = 0; nodeIndexY < rowCount; nodeIndexY ++)

 {

 meshSeries.Data[nodeIndexX, nodeIndexY].Value = value;

 }

}

 meshSeries.InvalidateValuesDataOnly(); //Only data values are updated

6.24 Bands

Demo examples: Bands; Statistic analytics; Long data analysis; Zoom bar chart

Bands can be considered as series. They have the same user interface actions as other series, but one

band series contains only one band. A band is a vertical or horizontal area reaching from a margin across

to another. A band can be bound to a Y axis or X axis using the Binding propert. If the band is bound to Y

axis, AssignYAxisIndex property must also be set. If the series is bound to X axis, ignore AssignYAxisIndex

property, or set it as unassigned (-1).

Copyright LightningChart Ltd 2009-2023 135

If the band should be behind the line or bar series, set Behind property true. Band edges are set by

ValueBegin and ValueEnd properties, which are values of the bound axis. Band can be dragged to

another location with mouse. Resize the band by dragging it from the edge, which updates then the

dragged edge value, ValueBegin or ValueEnd.

6.25 Constant lines

Demo examples: Oscilloscope; Lissajous monitor; Signal reader; Areas; Segments with splitters

Like bands, constant lines can be considered as series. Constant lines are bound to Y axis, and it

represents one horizontal line, ranging from graph left edge to right edge. Set the level via Value

property. Constant lines can be vertically moved by dragging with mouse. By setting Behind property

true, the constant line is drawn behind line and bar series, otherwise it is drawn in front of them.

Figure 6-81. A couple of bands with line series

136 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-82. Some constant lines around a sine line series.

6.26 Annotations

Demo examples: Annotations; Custom rendering; Intensity grid mouse control; Multi-channel cursor

tracking; Stocks and bars; Annotations table

Annotations allows displaying mouse-interactive text labels or graphics anywhere in the chart area.

Annotations can be moved around by mouse, resized, rotated, their target and location can be changed

etc. Alternatively, they can be controlled by code. Annotations are great also when custom graphics

must be rendered on the screen, as they can be rendered in different styles and shapes. Create

AnnotationXY objects in ViewXY.Annotations collection.

By moving mouse over an annotation, it goes into mouse-interactive edit state, allowing relocating the

annotation, resizing it, rotating it, and determining where the arrow points to.

Figure 6-78. Move mouse over the annotation to enter the editing state. Move mouse away to leave the edit state.

Copyright LightningChart Ltd 2009-2023 137

Figure 6-79. AnnotationXY objects with various styles, placed around a line series. Use Style property to select the shape.

 Controlling target and location

Target is the ending point of the arrow, the point that the arrow or callout tip points to. Target can be

set in axis values or in screen coordinates. Use TargetCoordinateSystem to select between AxisValues

or ScreenCoordinates. When AxisValues is selected, TargetAxisValues property sets where the arrow

line points to (end of the arrow line). Use TargetScreenCoords to set it in screen coordinates instead.

Location is the starting point of the arrow. It can be set by screen coordinates, axis values, or as relative

offset from Target. Use LocationCoordinateSystem to select, and LocationScreenCoords,

LocationAxisValues or LocationRelativeOffset to control the location by the selected method. Location

is also the center point of text area rotation.

Anchor property controls how the text area is placed at Location. By setting Anchor.X = 0.5 and Anchor.Y

= 0.5, the beginning of the arrow is in the middle. When setting Anchor.X 0.1 and Anchor.Y = 0.25, arrow

start is near the upper left corner as the following figure illustrates:

138 LightningChart® .NET User’s Manual, rev. 10.5

0,0 1,0

0.1, 0.25

0,1 1,1

Figure 6-83. Anchor values explained. Current Anchor.X = 0.1 and Anchor.Y = 0.25. When the anchor values are between 0…1,
the arrow start point is inside the text area.

 Using mouse to move, rotate and resize

Rotate

Resize (X + Y)

Resize (X)

Resize (Y)Target

Location/
anchor adjust

Figure 6-84. Annotation mouse-interactive nodes.

Drag from Target to move the end of the arrow. Drag from text area to set new Location. By dragging

from round location/anchor node, Anchor and Location properties can be adjusted at the same time,

keeping the text box in the same place.

By holding Shift key down while dragging from X or Y resize node, a symmetrical operation is used, both

sides are adjusted at same time. By holding Shift key down while dragging from a corner resize node

(X+Y), resizing maintains the aspect ratio. In rotate operation, Shift key snaps the rotate angle to nearest

multiple of 15 degrees.

Copyright LightningChart Ltd 2009-2023 139

 Adjusting appearance

Select the annotation shape by setting Style property. The options are: Rectangle, RectangleArrow,

RoundedRectangle, RoundedRectangleArrow, Arrow, Callout, RoundedCallout, Ellipse, EllipseArrow,

Triangle and TriangleArrow.

With styles with arrow, use ArrowLineStyle, ArrowStyleBegin and ArrowStyleEnd to control the arrow

design. As arrow end styles, there are options: None, Square, Arrow, Circle and Caliper.

Use Fill to modify the fill of the annotation. The appearance of the editing state mouse-interactive nodes

can be changed from NibStyle. TextStyle controls the font settings and text alignment inside the text

area. BorderLineStyle and CornerRoundRadius control the border line appearance.

 Size settings

Sizing property controls how the annotation text box is to be sized:

• Automatic adjusts the size by the contents, and leaves AutoSizePadding space to the borders.

• AxisValuesBoundaries allows the size of the annotation to be set by axis values. Use

AxisValuesBoundaries.XMin, XMax, YMin and YMax for defining them.

• ScreenCoordinates enables settingsize by the screen coordinates. Use SizeScreenCoords.Height

and Width.

 Keeping text area visible

When KeepVisible is enabled, the annotation text area is forced inside the graph. The annotation won't

move outside the graph when moving it by mouse or code. When panning the graph view or adjusting

axes, the annotations are repositioned to show inside the graph.

 Displaying annotation over axes

By setting RenderBehindAxes = True, annotation is shown under axes. All clipping and Z ordering

features are not feasible in that case. RenderBehindAxis has no effect if ClipInsideGraph is set true.

140 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-85. On the left RenderBehindAxes = True, on the right RenderBehindAxes = False. ClipInsideGraph is set False in
both cases.

 Clipping inside graph

When ClipInsideGraph is enabled, the annotation is clipped inside the graph. When it’s disabled, the

annotation is rendered also in the margin area of the chart.

By enabling ClipWhenSweeping, the annotation doesn’t show up in the sweeping gap area when

ScrollMode is set Sweeping.

 Controlling the Z order

By setting Behind property to its default value, False, the annotation appears on top of series. By setting

it True, it is rendered before the series, thus appearing under them.

The annotations appear in the order they exist in Annotations list, while keeping the Behind filter as a

master controller. Annotations Z order can be changed quickly by using ChangeOrder method of

annotation for example in a mouse event handler. The options for order change are:

• BringToFront brings the annotation to topmost

• SendToBack sends to back

• MoveBack moves one step backwards

• MoveFront moves one step forwards

 LayerGrouping performance optimization

When having hundreds of annotations with visible text, the delay of text rendering starts to play a

significant role. By default, text rendering follows the Z order, keeping the text firmly within an

annotation.

Copyright LightningChart Ltd 2009-2023 141

The performance can be improved by setting LayerGrouping = True, and the chart will use only two flat

annotation text layers. One for annotations with Behind set to True, and other for annotations with

Behind set to False. It greatly improves performance. On the other hand, the text will be rendered wrong

if there are other annotations overlapping others.

 Figure 6-86 On the left LayerGrouping = False. On the right, LayerGrouping = True, Z order of texts is lost.

When using Style = Arrow or by setting the annotation fill not visible, the restriction of Z order typically

doesn't show up.

 Converting between axis values and screen coordinates

In some cases, Location or Target may be wanted to be defined in mixed configuration. X in screen

coordinates and Y in axis values, or vice versa. Axes have ValueToCoord method for converting an axis

value to a screen coordinate, and CoordToValue to convert a screen coordinate to an axis value as

described in chapter 6.2.12.

142 LightningChart® .NET User’s Manual, rev. 10.5

6.27 Legend box

Demo examples: Multiple legends; Heatmap legends; Segments with splitters

Starting from v.8, ViewXY supports multiple legend boxes in the same graph. Insert these legend boxes

in ViewXY.LegendBoxes collection.

Figure 6-87. Extensive LegendBoxXY property tree.

Copyright LightningChart Ltd 2009-2023 143

 Hiding / showing a series from legend box

Figure 6-88. Legend box shows series titles and icons. Hide a series by deselecting the series checkbox.

 Showing series in the legend box

By default, all series are shown in the legend box. If a specific series should not be listed, set

series.ShowInLegendBox = False, for that series.

If multiple legend boxes are used, use series.LegendBoxIndex to select the preferred legend box. Series

can appear only in one legend box. Default index is 0 for all series, meaning they will all appear in the

same legend box unless stated otherwise.

 Selecting in which graph segment to show a legend box

Use SegmentIndex to control in which segment to show the legend box. It applies only to segment-

based Position options.

 Modifying check boxes

To show or hide the check boxes in the legend box, use ShowCheckBoxes property. CheckBoxColor and

CheckMarkColor can be used to change the appearance of the check box while CheckBoxSize controls

the size of the box in pixels.

_chart.ViewXY.LegendBoxes[0].ShowCheckboxes = true;

_chart.ViewXY.LegendBoxes[0].CheckBoxColor = Colors.Green;

_chart.ViewXY.LegendBoxes[0].CheckMarkColor = Colors.Blue;

_chart.ViewXY.LegendBoxes[0].CheckBoxSize = 15;

 Hiding icons

To hide the icons, set ShowIcons = False.

144 LightningChart® .NET User’s Manual, rev. 10.5

 Modifying intensity series palette scales

To hide the palette scale of an IntensityGrid or -Mesh, set IntensityScales.Visible = False. To resize it, set

ScaleSizeDim1 and ScaleSizeDim2 properties. The border of the scale as well as the position of the title

can also be modified.

Figure 6-89. LegendBox.IntensityScales.Visible = false in the bottom picture.

The precision of Legendbox IntensityScale labels format is controlled by LegendBoxValuesFormat

property. Standard or custom .NET numeric format strings should be used.

intensitySeries.LegendBoxValuesFormat = "0.00";

 Controlling positions

Legend boxes can be placed automatically or manually. Automatic placement allows them to be aligned

to the left/top/right/bottom side of the graph segments, or on margins. Control the position with

Position property. Position options are: TopCenter, TopLeft, TopRight, LeftCenter, RightCenter,

BottomLeft, BottomCenter, BottomRight, Manual.

If the view is divided to several segments, legend boxes can be aligned based to the segment it belongs

to (use SegmentIndex to control this). For segment-based controlling there are the following options:

SegmentTopLeft, SegmentTopCenter, SegmentTopRight, SegmentBottomLeft, SegmentBottomCenter,

SegmentBottomRight, SegmentLeftMarginCenter, SegmentRightMarginCenter.

Offset property shifts the position by given amount from the position determined by Position property.

 // Setting legend box position, offset shifts from RightCenter position

 chart.ViewXY.LegendBoxes[0].Position = LegendBoxPositionXY.RightCenter;

 chart.ViewXY.LegendBoxes[0].Offset = new PointIntXY(-15, -70);

Manual positioning calculates the offset from the top-left corner of the legend box to the view’s top-left

corner. Note that this differs from TopLeft option, which is calculated from the top of the graph area.

Note that when moving or resizing legend box, its Position is set to Manual, and Offset property is

updated to reflect the new position.

Copyright LightningChart Ltd 2009-2023 145

Automatic legend box alignment is disabled until setting Position back to an option other than ‘Manual’.

Since Offset is not updated when switching between Position options, legend box may seem to disappear

sometimes (it is located outside the view). Fix this by setting Offset back to 0, 0.

 Allocating space for legend boxes between graph segments

When setting ViewXY.AutoSpaceLegendBoxes = True, additional space between segments will be

allocated to fit the legend boxes in them. Note that also ViewXY.AxisLayout.SegmentsGap is allocated

between segments.

Figure 6-90. Position = SegmentBottomRight. AutoSpaceLegendBoxes = False.

Figure 6-91. Position = SegmentBottomRight. AutoSpaceLegendBoxes = True.

146 LightningChart® .NET User’s Manual, rev. 10.5

 Alignment of legend boxes in segment gap

To align legend box vertically near the specified segment, set AlignmentInSegmentGap = Near. To align

it vertically to center of the gap between segments, set AlignmentInSegmentGap = Center.

 Horizontal alignment of several legend boxes sharing the same margin

AlignmentInVerticalMargin property has Left/Center/Right options. The property controls horizontal

positioning of legend boxes set to the same vertical margin.

AlignmentInVerticalMargin
controls horizontal positioning

Figure 6-92. AlignmentInVerticalMargin = Left set for both Legend boxes.

Copyright LightningChart Ltd 2009-2023 147

 Resizing and moving legend boxes

The legend boxes support resizing and scroll bars. Grab from the edge to resize it.

Figure 6-93. Scrollbars in a legend box

Note that when moving or resizing legend box, its Position is set to Manual, and Offset property is

updated to reflect the new position (see chapter 6.27.7).

 Legend box events

Aside from typical Mouse click events, Legend boxes have a couple of specific events.

- CheckBoxStateChanged triggers when the state of a series checkbox has changed from

checked to unchecked or vice versa. The event has IsChecked property to get the current

state of the checkbox, and Series property to check which series was affected.

- SeriesTitleMouseClick, SeriesTitleMouseDown etc. are special events which trigger only

when a series title in the legend box is interacted with. If similar event, for instance

MouseClick, is used for both the legend box and the series titles, the series title event will

take priority. MouseOverOn and MouseOverOff also have Series property to check which

series was affected.

Note that the above events only work when MoveFromSeriesTitle property has been disabled.

// Using Legend box events.

_chart.ViewXY.LegendBoxes[0].MoveFromSeriesTitle = false;

_chart.ViewXY.LegendBoxes[0].CheckBoxStateChanged +=

Legend_CheckBoxStateChanged;

private void LegendBox_CheckBoxStateChanged(object sender,

Arction.Wpf.Charting.Views.CheckBoxStateChangedEventArgs e)

{

 if (e.Series is PointLineSeries series) // Get the affected series.

 {

 series.LineStyle.Color = Colors.Yellow;

 }

}

148 LightningChart® .NET User’s Manual, rev. 10.5

6.28 Zooming and panning

Use ZoomPanOptions to control the zooming and panning settings.

Figure 6-89. ZoomPanOptions properties and sub-properties.

Zooming and panning are configurable and can be performed by left or right mouse button. Zooming

can be also performed with mouse wheel.

Copyright LightningChart Ltd 2009-2023 149

 Zooming with touch screen

Set two fingers on the chart and pinch the fingers closer to zoom out, or away to zoom in.

The chart tries to detect if trying to do a horizontal or vertical zooming, or both at same time. This feature

is called ‘zooming with rails’, which can be controlled by MultiTouchZoomDirection

(Free/XAxis/YAxis/Rails).

By pinching/spreading fingers above an X or Y axis or their labels, the zooming applies to that specific

axis only.

Zooming with touch can be disabled by setting MultiTouchZoomingEnabled = false.

 Panning with touch screen

Set two fingers on the screen and slide them at same pace to pan the view.

Some systems support panning with inertia, so it is possible to “throw” the fingers off the screen, and

the view keeps panning and finally slows down until stopped.

By setting a finger above an X or Y axis or labels of it, and sliding the finger, the panning applies to that

specific axis only.

 Left mouse button action

Set DevicePrimaryButtonAction to Zoom, to enable zooming with left mouse button. Set it to Pan to

enable panning. To disable zoom and pan from left mouse button, set it to None.

 Right mouse button action

Set DeviceSecondaryButtonAction to Zoom, to enable zooming with right mouse button. Set it to Pan to

enable panning. To disable zoom and pan from right mouse button, set it to None.

150 LightningChart® .NET User’s Manual, rev. 10.5

 RightToLeftZoomAction

RightToLeftZoomAction applies when DevicePrimaryButtonAction or DeviceSecondaryButtonAction is

set to Zoom. RightToLeftZoomAction specifies what happens when mouse zooming is made from right

to left (mouse X button down-coordinate > button up-coordinate). The following selections are available:

ZoomToFit: Fits all Y axes and X axes so that all series data belonging to them is shown. By using

ViewFitYMarginPixels with greater value than 0, the axes are scaled so that given space in pixels is

reserved empty of data, in both Y axis minimum and maximum end.

RectangleZoomIn: Zooms in with rectangle, as in zooming from left to right.

ZoomOut: Zooms out, by using ZoomFactor.

RevertAxisRanges: Sets axis values to specific values, which are restored after the view has been zoomed

or axis ranges have been otherwise modified. In each axis, there’s RangeRevertEnabled property, which

controls if the axis range should be reverted. If it’s enabled, RangeRevertMinimum and

RangeRevertMaximum properties are applied to the axis when dragging mouse from right to left, and

the mouse button is released.

PopFromZoomStack: Sets the same axis ranges that were used when zooming in last time, in other

words, goes back to the previous zoom level.

 Zooming with mouse button

6.28.6.1 Zoom in/out by clicking

Use ZoomFactor property to control the how much closer/farther the zoom is applied. To apply negative

zoom effect, set value as inversed value (1/factor). The zoom is applied using mouse cursor position as a

zoom center point.

X dimensional zoom:

With chart control focused, press Shift key down. Zoom X cursor appears. Click configured mouse button

to zoom in, and the other button to zoom out.

Y dimensional zoom:

With chart control focused, press Ctrl key down. Zoom Y cursor appears. Click configured mouse button

to zoom in, and the other button to zoom out. When using a stacked YAxisLayout, zooming applies to all

graph segments (Y axes). By pressing Ctrl and Alt keys down, the Y dimensional zoom is applied only to

the graph segment the mouse was clicked over.

Press both Shift and Ctrl(+Alt) keys down simultaneously, for applying zoom to both X and Y dimensions.

Copyright LightningChart Ltd 2009-2023 151

6.28.6.2 Zooming with mouse cursor options

RectangleZoomMode -property allows configuring in which position the zoom rectangle is drawn and

what how different directions should be handled. By default, the property is set to

HorizontalAndVertical, meaning that the area drawn by dragging mouse from left to right is to be

zoomed. Respectively zoom-out rectangle is drawn when mouse is dragged from right to left. If

RectangleZoomMode is set to Horizontal or Vertical, only that direction will be zoomed.

Both X-axes and Y-axes have ZoomOrigin -property which can be used to set the position around which

the zooming rectangle will be centered. If RectangleZoomMode is set to use AboutYAxisZoomOrigin,

AboutYAxisZoomOrigin or AboutXYZoomOrigin, the position set via ZoomOrigin settings will always be

used as a center point of the zoom rectangle.

Figure 6-90. Standards settings: ZoomPanOptions.RectangleZoomMode = HorizontalAndVertical. ZoomOrigin has no effect
on the zooming rectangle.

Figure 6-91. ZoomPanOptions.RectangleZoomMode = Horizontal. Only X-axis is zoomed, while Y-axis remain unchanged.

152 LightningChart® .NET User’s Manual, rev. 10.5

S

Figure 6-94. ZoomPanOptions.RectangleZoomMode = AboutXAxisZoomOrigin. Zoom rectangle is centered around
XAxis.ValueOrigin. Vertical size of zoom rectangle defined by mouse-down and mouse-up position.

Figure 6-92. ZoomPanOptions.RectangleZoomMode = Vertical. Only Y-axis is zoomed, while X-axis remain unchanged.

Figure 6-93. ZoomPanOptions.RectangleZoomMode = AboutXYZoomOrigin. Mouse down position ignored. Zoom rectangle
is drawn relatively to ZoomOrigin (of both Axes) and mouse current position.

Copyright LightningChart Ltd 2009-2023 153

Figure 6-95. ZoomPanOptions.RectangleZoomMode = AboutYAxisZoomOrigin. Zoom rectangle is centered around
YAxis.ValueOrigin. Horizontal size of zoom rectangle defined by mouse-down and mouse-up position.

6.28.6.3 Zoom in with rectangle

With configured mouse button, drag a rectangle around the area to be zoomed, from upper left corner

to bottom right corner. Both X and Y dimensions effect. The dimensions are selected by

RectangleZoomDirection property. The zoom rectangle border and fill style can be modified by using

ZoomRectFill and ZoomRectLine properties.

6.28.6.4 Configuring zoom out rectangle

When RightToLeftZoomAction is set to ZoomToFit, ZoomOut, RevertAxisRanges or PopFromZoomStack,

the zoom out rectangle appears when zooming. Configure its fill by ZoomOutRecFill and line style by

ZoomOutRectLine.

 Zooming with mouse wheel

When WheelZooming is enabled, zoom in by scrolling the mouse wheel upwards and zoom out by

scrolling it downwards. The zoom center is the position of mouse cursor. Use ZoomFactor to adjust the

mouse wheel zoom strength. By keeping Shift key pressed, the zoom is applied only to X dimension. By

keeping Ctrl key pressed, the zoom applies only for Y dimension. Note that zooming is not available when

ScrollMode is set to Sweeping.

154 LightningChart® .NET User’s Manual, rev. 10.5

 Zooming and panning with device wheel over axis

Use AxisWheelAction to configure the outcome of device wheel actions applied over an axis.

None: The wheel does nothing

Zoom: Zoom only the axis the pointer is currently over

Pan: Pan only the axis the pointer is currently over

ZoomAll: Zooms all X axes if pointer is over an X axis, or all Y axes if over a Y axis. Applies to other axes

only when YAxisLayout = Layered.

PanAll: Pans all X axes if pointer is over an X axis, or all Y axes if over a Y axis. Applies to other axes only

when YAxisLayout = Layered.

 Panning with mouse button

Configure DevicePrimaryButtonAction or DeviceSecondaryButtonAction to Pan for panning to work.

Drag the graph area with the configured mouse button pressed down. To stop panning, release the

button. Panning scrolls both X and Y axes by dragged amount, if PanDirection is Both. By setting

PanDirection Vertical, it only targets Y axes. Respectively, PanDirection Horizontal targets only X axes.

Use PanThreshold to give some tolerance in pixels before the panning starts to affect. It’s very handy

when using ContextMenuStrip control assigned for the chart control, preventing it to open every time

the panning stops.

 Enabling/disabling Ctrl, Shift and Alt

Zoom operations support these modifier keys, and by default, they are enabled. To disable them, set

AltEnabled = False, CtrlEnabled = False or ShiftEnabled = False.

 Zoom in/out with code

Use ZoomByFactor(…) method to zoom with a center point and a zoom factor. Use Zoom(…) method to

zoom with rectangle. ZoomToFit() method fits invokes ”Zoom to fit” operation (fits all Y axes and X axis

so that all series data is shown).

Copyright LightningChart Ltd 2009-2023 155

 Zooming an axis by code

Set values to X or Y axis Minimum and Maximum properties. Use SetRange(…) to set them both at same

time.

 Rectangle zooming about a configurable origin

By enabling RectangleZoomAboutOrigin, the rectangle zooming in/out applies symmetrically using

ZoomOrigin as a center point, set in X axis and Y axis values.

Figure 6-92. ZoomPanOptions.RectangleZoomAboutOrigin enabled. ViewXY.XAxes[0].ZoomOrigin = 10 and
ViewXY.YAxes[0].ZoomOrigin = 50.

 Linking Y axes zoom with same units

By enabling RectangleZoomLinkYAxes, all the Y axes having the same Units.Text string get the same Y

axis range as the axis that was rectangle zoomed.

156 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-93. Stacked view with 5 Y axes. When rectangle zoom is applied over a graph segment, the Y axes of it get zoomed,
and the new Y axis range is copied to all Y axes having the same Units.Text.

 Automatic Y fit

Demo examples: Signal reader; Audio L+R, area, spectrograms; Waveform, persistent spectrum

Use AutoYFit property to control the automatic Y axis adjustment. Automatic Y fit can be used to adjust

the Y axis ranges to show all the data in the chart in visible X axis range. It is intended especially for real-

time monitoring purposes. The fit is applied in time intervals, use UpdateInterval to set the interval in

milliseconds. MarginPercents can be used to define if any empty space should be left between the series

and the graph borders. By enabling Through, the fitting analysis is made for all data, but may cause some

overhead in performance critical systems. By disabling it, only a small piece of latest data is used for

fitting routine and may cause improper behavior in certain applications.

AutoYFit can be enabled via ZoomPaddingOptions:

_chart.ViewXY.ZoomPanOptions.AutoYFit.Enabled = true;

Which Y-axes are automatically fit should be also defined. With TargetAllYAxes, automatic Y fit can be

applied to every Y-axis simultaneously. Alternatively, AllowAutoYFit can be enabled for each Y-axis

separately.

// Enable AutoYFit for all Y axis.

_chart.ViewXY.ZoomPanOptions.AutoYFit.TargetAllYAxes = true;

// Enable AutoYFit only for this Y axis.

_chart.ViewXY.YAxes[0].AllowAutoYFit = true;

Note! AxisY class also has Fit() methods for fitting in Y dimension.

Copyright LightningChart Ltd 2009-2023 157

 Aspect ratio

AspectRatioOptions.AspectRatio controls the X/Y (or longitude / latitude in maps) ratio.

By default, it is set Off allowing X and Y axis ranges be set individually. By setting the aspect ratio to

Manual, the ManualAspectRatioWH property can be used to set the preferred ratio. Changing

ManualAspectRatioWH adjusts the x axis Minimum and Maximum properties to get the desired aspect

ratio. Zooming operations will follow aspect ratio setting.

ManualAspectRatioWH is calculated as follows:

ManualAspectRatioWH = View width in pixels / View height in pixels * X axis range / Y axis range

For example:

ManualAspectRatioWH = 1530 / 902 * (20 – 0) / (100 – 0)

Width and height of the view depends on the window size. Axis ranges are simply maximum – minimum.

Figure 6-94. The view area of the chart. Its size in pixels is used to calculate the ManualAspectRatioWH.

When AspectRatio is other than Off, axis scaling nibs are not available.

For maps (see 6.31), AspectRatio = AutoLatitude is a very useful option. AutoLatitude changes the

aspect ratio dynamically when viewing the map in different locations. The aspect ratio is determined

by the center point of the view.

 Excluding specific X or Y axes from zooming and panning operations

• To exclude specific X or Y axes from Zooming operations, set

axis.ZoomingEnabled = False

158 LightningChart® .NET User’s Manual, rev. 10.5

• To exclude specific X or Y axes from Panning operations, set
axis.PanningEnabled = False

6.29 DataBreaking by NaN or other value

Demo examples: Data breaking in series

Figure 6-95. DataBreaking options in series that support it.

These series types support data breaking:

• PointLineSeries

• FreeformPointLineSeries

• SampleDataSeries

• AreaSeries

• HighLowSeries

• PointLineSeries3D

LightningChart skips rendering of the data points that match with specified breaking Value. All other

values it renders normally.

Figure 6-96. DataBreaking in use for PointLineSeries, SampleDataSeries, AreaSeries and HighLowSeries.

Copyright LightningChart Ltd 2009-2023 159

Note! When DataBreaking.Enabled = True, it will cause significant extra overhead, and is not

recommended for solutions needing very high real-time data rates. Consider using ClipAreas, see

chapter 6.30.

For example, using NaN to break PointLineSeries data:

 Figure 6-97. Using NaN to break PointLineSeries.

Code:

 int pointCount = 101;
 double[] xValues = new double[pointCount];

 double[] yValues = new double[pointCount];

 for (int point = 0; point < pointCount; point++)

 {

 xValues[point] = (double)point * interval;

 yValues[point] = 30.0 + 5.0 * Math.Sin((double)point / 20.0);

 }

 //Add some NaN values in Y array to mark break points

 yValues[40] = double.NaN;

 yValues[70] = double.NaN;

 yValues[71] = double.NaN;

 yValues[72] = double.NaN;

 yValues[73] = double.NaN;

 yValues[90] = double.NaN;

 yValues[91] = double.NaN;

 //Add new series with DataBreaking Enabled

PointLineSeries pls = new PointLineSeries(_chart.ViewXY,

_chart.ViewXY.XAxes[0], _chart.ViewXY.YAxes[0]);

 pls.DataBreaking.Enabled = true;

 // set data gap defining value (default = NaN)

 pls.DataBreaking.Value = double.NaN;

160 LightningChart® .NET User’s Manual, rev. 10.5

 SeriesPoint[] points = new SeriesPoint[pointCount];

 for (int point = 0; point < pointCount; point++)

 {

 points[point].X = xValues[point];

 points[point].Y = yValues[point];

 }

 //Assign the data for the point line series

 pls.Points = points;

 //Add the created point line series into PointLineSeries list

 _chart.ViewXY.PointLineSeries.Add(pls);

6.30 ClipAreas

Demo examples: Clip areas

Like DataBreaking (see 6.29), ClipAreas can be used to prevent part of the series data from

rendering. They can be used to filter out bad data ranges, out-of-range data by Y value, etc.

ViewXY's series have SetClipAreas method for setting or updating the clipping areas. It accepts an

array of ClipArea structures. The ClipAreas array can be changed frequently, and performance stays

good up to thousands of ClipAreas.

The ClipArea applies for the series that it has been assigned to. Note that this is a rendering-stage

clipping and mouse operations will respond to series when placed over the ClipArea if there's actual

data under it.

Figure 6-98. ClipAreas defined for 3 series. For PointLineSeries, AreaSeries, and IntensityGridSeries. On the left, the
ClipAreas are not used. On the right, ClipAreas are enabled. For yellow PointLineSeries, X dimensional clipping areas
have been defined to mask off low-amplitude data. For red AreaSeries, Y-dimensional ClipArea cuts too high-amplitude
data from the top. For IntensityGridSeries, X- and Y-dimensional ClipAreas are used to prevent the series from rendering
in specific areas.

Using ClipAreas is the performance-wise preferred way to break a line to several data segments

instead of using DataBreaking feature, or spawning hundreds of separate series during real time

monitoring.

Copyright LightningChart Ltd 2009-2023 161

6.31 Maps

Use Maps property and its sub-properties to show geographic maps. LightningChart maps come in two

different categories: vector maps and tile maps. The maps are shown in so called equirectangular

projection.

Figure 6-99. Equirectangular projection of the world. X range is from -180 to 180 degrees (180W to 180E), Y range from -90 to
90 degrees (90S to 90N). Polar areas get greatly stretched in this projection.

This projection allows using LightningChart’s series types and other objects that are practically all

bound to X and Y axes, same time with the maps.

162 LightningChart® .NET User’s Manual, rev. 10.5

6.32 Vector maps

Demo examples: World map; Map route; Map with environmental data; Wind data

The geographic vector data is stored in LightningChart map files, with .md extension. LightningChart is

delivered with set of map files.

The X-axis is used for Longitude, and the Y-axis for latitude. See chapter 6.2.3 for showing map coordinate

axes. The map coordinates are decimal degrees, with latitude origin at equator and longitude origin at

Greenwich, U.K.

Figure 6-100. Maps’ properties and sub-properties. The whole tree is for vector maps, except TileLayers collection and
TileCacheFolder, which is for tile maps.

 Selecting active map

Set the directory name to the Path property, where the map files exist. The active map can be

selected with Type property, for maps delivered with LightningChart. To use an own map file, set the

FileName property.

If no maps are wanted, set Type to Off.

Copyright LightningChart Ltd 2009-2023 163

Figure 6-101. Map Type options. The maps delivered with LightningChart are shown. The type name postfix tells a rough
detail level of the map.

In general, the maps of LightningChart are made in very high detail level. For real-time monitoring

solutions it is important to select a map giving proper detail and performance level.

 Aspect ratio

ViewXY.ZoomPanOptions.AspectRatioOptions.AspectRatio controls the X/Y (or longitude / latitude)

ratio.

Set it to Off to enable X and Y axis range setting individually allowing stretching the map.

AutoLatitude changes the aspect ratio dynamically when viewing the map in different locations. The

aspect ratio is determined by the center point of the view. By setting the aspect ratio to Manual, use

the ManualAspectRatioWH property to set the preferred ratio. See chapter 6.22.16 for detailed

explanation of how aspect ratio is calculated.

164 LightningChart® .NET User’s Manual, rev. 10.5

 Layers and their appearance settings

Each map file can contain several layers. For example, layers for land regions, lakes, rivers, roads and

cities. The layers and their data are accessible from Layers array property.

Figure 6-102. Map layer details opened in Properties editor.

Each layer has a specific type. The layer appearance options can be changed with corresponding

options property. Use LandOptions for modifying the appearance of land regions, LakeOptions for

lakes, RiverOptions for rivers, RoadOptions for roads, CityOptions for cities, and OtherOptions for

unspecified layer types.

Copyright LightningChart Ltd 2009-2023 165

Figure 6-103. Default LandOptions, and corresponding view from Europe.

Figure 6-104. Modified LandOptions.

5.25.3.1 Setting individual fill and border style for each layer item

Each map element fill or border appearance can be set individually. Change BorderDrawStyle and

RegionDrawStyle properties to Individual. Then, access the Items collection, and navigate to preferred

item and edit the BorderLineStyle and Fill properties. The Items collection can be navigated

programmatically by Name property, here “Germany”.

166 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-105. Setting layer border line and region fill styles to Invidual and editing region in Items collection.

Figure 6-106. Germany region drawn with individual fill and border.

 Mouse interactivity

Enable AllowUserInteraction for all kind of interoperation with map regions and objects. Regions

(land, lakes) and vector layers (rivers, roads) can be pointed with mouse. Once the mouse is over an

object, it gets highlighted with SimpleHighlightColor, if Highlight is set to Simple. When Highlight is

set to Blink, the object will blink in light and dark colors. By setting Highlight to None, the object is

Copyright LightningChart Ltd 2009-2023 167

not highlighted, but it still can be clicked and for example used to invoke

Maps.ButtonDownOnMapItem event.

Map objects may have associated data included, like population or other statistical data. Use

UserInteractiveDeviceOverOnMapItem/UserInteractiveDeviceOverOffMapItem

/ButtonDownOnMapItem event handler to access the data. The data for a map item can be retrieved

with GetInfo method, giving a dictionary of keys and values.

Here’s an example of how to show all data in a list box. The item name is displayed in a different text

box.

private void ButtonDownOnMap(ButtonDownOnMapItemEventArgs args)

 {

 MapItem mapItem = args.MapItem;

 textBoxCountryName.Text =

 m_chart.ViewXY.Maps.Layers[args.Layer].Name

 + ": " + mapItem.Name;

 listBoxItemValues.Items.Clear();

 if (mapItem.GetInfo() != null)

 {

 Dictionary<string, string> dict = mapItem.GetInfo();

 Dictionary<string, string>.KeyCollection keys = dict.Keys;

 foreach (String key in keys)

 {

 String strValue;

 if (dict.TryGetValue(key, out strValue))

 {

 listBoxItemValues.Items.Add(key + ": " + strValue);

 }

 }

 }

 }

 Background photos

Adding a MapBackground object in Maps.Backgrounds property allows displaying bitmap images as

the backgrounds of the maps. Satellite images or other raster images are available from several GIS

data providers. The image can be set to Image property, and its latitude and longitude range can be

set with LatitudeMin, LatitudeMax, LongitudeMin and LongitudeMax properties. The image is not

displayed outside the set ranges.

To show the background through the map layers, it may be necessary to adjust the fill settings for

each layer. Use transparent colors or colors with low alpha level.

168 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-107. Map of the world. LandOptions.FillVisible is set to false, and one background image is set to latitude range
of -90…90 and longitude range of -180…180. The map region borders and cities are shown.

 Combining other series with maps

Geographical maps can be combined with any ViewXY series type. The maps are drawn in the

background and the series over them.

Figure 6-108. Map of Europe, with a couple of FreeformPointLine series as routes. Flag markers are added to them as
mouse-interactive waypoints.

Copyright LightningChart Ltd 2009-2023 169

Figure 6-109. Map of the world, with IntensityGrid series presenting the elevation.

Figure 6-110. Weather radar data visualization with IntensityGrid series over the map of Europe.

170 LightningChart® .NET User’s Manual, rev. 10.5

 Importing maps from ESRI shape file data

Import feature makes a LightningChart map file (.md) from .shp files. ESRI shapefile (*.shp) is a widely

used map file format supporting vector and polygon data.

Map wizard can be used to convert shapefile data to LightningChart (LC) map data format. LC format

supports layering, so multiple shapefiles can be merged into a single file. Map file structures and

objects are pre-processed for maximum run-time performance.

Tip: LightningChart® .NET’s demo application has an example of map importing. Run import wizard

from there to make custom LC map files through import.

Conversion is done in minimum of three steps:

1. Selecting files and setting up layers based on the files in the Shapefile Selection Dialog.

2. Determining file text encoding.

3. Selecting items included in the resulting map file.

Note that steps 2 and 3 are repeated for each source shp file. Shapefile does not tell which encoding

it uses, so it must be selected by the user.

After the steps, the conversion begins. If the maps are imported from a custom application, the

developer is encouraged to setup an event handler, because conversion might take a very long time,

so that user can be informed about the conversion progress.

Also, if user selects base layer, there might be a considerable delay between the steps, which is due

to prefiltering data based on the layer.

6.32.7.1 Programming interface for importing shp data

Conversion is run on a thread that is initialized from Maps.MapConverter class using following

method:

public bool SelectFilesAndConvert()

For monitoring conversion progress there is an event handler delegate:

public delegate void ConversionStateChangedHandler(ConversionProgress

progress, int i);

Initializing it:

MapConverter mapConverter = new MapConverter();

mapConverter.ConversionStateChanged += new

MapConverter.ConversionStateChangedHandler(mapConverter_ConversionStateCha

nged);

Copyright LightningChart Ltd 2009-2023 171

6.32.7.2 Dialogs

There are usually three dialogs involved in the conversion process. For selecting a filter, there is a

distinct dialog.

6.32.7.2.1 Shapefile Selection Dialog

After SelectFilesAndConvert() function is called, file selection dialog opens. In this dialog

user selects the source files and sets up the layering. User can also save the map configuration

by selecting proper file at the dialog.

Figure 6-111. Source shape file selection dialog.

File list

Contains list of files in the order in which they are drawn. File data at bottom is drawn last. Order

of files can be chaged from the up/down buttons on the left of list. Select file and click up/down

to move file.

Layer name

Name of the layer. E.g. ”Countries”.

Layer type

Type of layer (specifies which options are used to render layer)

• City: layer items are of shapefile type POINT

• Lake: layer items are of shapefile type POLYGON

172 LightningChart® .NET User’s Manual, rev. 10.5

• Land: layer items are of shapefile type POLYGON

• River: layer items are of shapefile type POLYLINE

• Road: layer items are of shapefile type POLYLINE

• Other: layer items are of shapefile type POLYGON or POLYLINE

Base layer

Used to filter upper layer item selection, when user wants a map which contains only

single/some countries and there is only global map available. E.g. if layer contains countries,

only items over the selected countries/country will be included in the resulting map. There is a

small offset applied to POINT type, so that if point is near enough of border it’s included even if

it doesn’t overlap with base layer. If all data from the selected shapefiles are included in the

resulting map, don’t select base layer as it slows down item selection considerably, because all

items are checked if they overlap base layer, which is a very time consuming process.

Description

Free text which is shown in the map properties.

Configuration file name

XML configuration file name. Used for importing/replacing a layer. Note! Use single file when

creating map configuration as import. Replace methods can take only one shp input file.

Save config

Check this if wanting to save map configuration as xml file for later use. Selecting configuration

file automatically sets this checked.

Add button

Click to select shapefile to be added to list.

Remove button

Removes selected file from list.

Edit name button

Click to open ”Layer name editor”. Set layer name.

OK button

Click to advance to next stage (item selection).

6.32.7.2.2 Select Record Encoding and Invalid Name Fields

This dialog is used to select file text encoding and fields which have invalid or general name.

Shape file encoding may vary and there is no information about the encoding in the file, so user

must select valid encoding. The item name may be like ”UNK” for multiple items. In this dialog

Copyright LightningChart Ltd 2009-2023 173

the user can select which item name is emptied. Note that the items are still included in the

resulting file, if they are selected in the next phase.

Figure 6-112. ‘Record encoding’ and ‘Invalid name’ fields selection dialog.

File name

Shape file name for which the encoding applies.

Layer

Layer name.

Name field

Item name field in the shape file. After selecting a different field, the list is updated accordingly.

Name encoding

Item name encoding (try different values if the name does not seem to be right). After selecting

different encoding, the list is updated accordingly.

Record name list / select records with invalid name

List of items for the field selected in the ”Name” field.

OK

Confirm encoding selection (and possible invalid name).

6.32.7.2.3 Layer data selection dialog

This dialog is used to select items included in the resulting map file from the shape file. The layer

name is concatenated in the title. The dialog is adaptive, so that for certain layers there are some

fields which could be selected. E.g. for River/Road type layer there will be a Line width selection,

which could be set to line width field (if applicable). Note that the data may not contain all the

fields asked in the dialog. The Name field is mandatory for all items.

174 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-113. Layer data selection dialog.

The user interface items available in the dialog:

File name

Name of the file.

Layer name

Name of the layer.

Name field

Field used for item name. Set automatically from encoding selection dialog but can be adjusted

here also.

Population field

Field used for population data.

Country field

Country name field.

Line stroke width field

Line width. Guides rendering of lines.

Select stored items

Select items individually, select them all, or use Filter dialog to select subset of items

Toggle all

Select all fields from file.

Filter/Select...

Copyright LightningChart Ltd 2009-2023 175

Select fields which has a field with selected values. In the image above, only items with

SOVEREIGNT field set to ”Canada” or ”United States” are selected in the map.

Inverted

Invert filter selection (fields selected with filter are not included in resulting map file).

Select stored fields per item

Click on fields which should be included for each item. The fields are key values for Dictionary

class, which contains the fields per item.

6.32.7.2.4 Item filter

This dialog is opened from Layer data selection dialog and is used to filter items for resulting

map.

Figure 6-114. Item filter dialog.

Field

Select the field on which the filtering is based.

Values

Select values which are included in the resulting items.

The above selection means that items, whose field name SOVEREIGNT contains value ”Canada”,

are included in the resulting map.

 Importing and replacing map layers

User can import new layers to the map and replace existing layers. There are four methods for

importing and replacing a layer in the map from Maps interface. This is very useful when retrieving

frequently updated shp data while the software application is running.

176 LightningChart® .NET User’s Manual, rev. 10.5

ImportNewLayer methods inserts a new map layer to given layer index and ImportReplaceLayer

methods replaces the map layer at the given layer index.

public MapConverter.ConversionResult ImportNewLayer(String shpFilename,

int targetLayerIndex),

where shpFilename is the name of the source shp file name and targetLayerIndex is the index

of the new layer. This method uses dialogs presented above for setting up map configuration.

public MapConverter.ConversionResult ImportNewLayer(String shpFilename,

int targetLayerIndex, String configFile),

where shpFilename is the name of the source shp file name, targetLayerIndex is the index of

the new layer and configFile is map configuration file name. This method uses configuration

file created with dialogs presented above.

public MapConverter.ConversionResult ImportReplaceLayer(String

shpFilename, int targetLayerIndex),

where shpFilename is the name of the source shp file name and targetLayerIndex is the index

of the new layer. This method uses dialogs presented above for setting up map configuration.

public MapConverter.ConversionResult ImportReplaceLayer(String

shpFilename, int targetLayerIndex, String configFile),

where shpFilename is the name of the source shp file name, targetLayerIndex is the index of

the new layer and configFile is map configuration file name. This method uses configuration

file created with dialogs presented above.

Configuration file is a plain xml file, which can be edited with a text editor, though editing is not

recommended.

Copyright LightningChart Ltd 2009-2023 177

6.33 Tile maps

Demo examples: HERE Maps streets; HERE Maps satellite; HERE Maps with small charts

LightningChart has support for the following on-line tile data services:

• Here: Street maps, Satellite imagery

Figure 6-115. Properties of a TileLayer.

Add TileLayer object(s) in ViewXY.Maps.TileLayers collection. Several layers can be inserted and

made semi-transparent with AlphaLevel property. The TileLayer objects are rendered in the order

of appeareance in the TileLayers collection, the first layer being in the background. By setting

AboveVectorMap = False, the layer renders before the vector map, if such are defined (see 6.32).

By default, the TileLayer renders after the vector maps.

TileLayer gets information as small images from on-line service provider through http protocol and

shows them in the chart area. The images are refreshed when zooming or panning the map view.

Loading a new set of tiles will take some time, up to several seconds.

Tile cache

The chart stores the tiles into a cache folder, which greatly reduces the loading time when panning

or zooming frequently in the same region. When the chart needs to show a tile, it first checks if it

can be found in the cache folder, and if not, retrieves it from the web service. In a team use, where

many workstations need to access the tile maps, it is wise to select a shared local network server

folder. By default, the cache folder is c:\Users\[Current user]\AppData\Local\Temp.

Set the cache folder in ViewXY.Maps.TileCacheFolder.

Clear the cache folder by calling ViewXY.Maps.ClearTileCacheFolder() method.

178 LightningChart® .NET User’s Manual, rev. 10.5

 HERE

LightningChart supports tile data service by Here. Developer or end user must make an own

contract with Here to be able to use the Here servers. Free trial keys can be acquired from

https://developer.here.com/plans/api/consumer-mapping

Selecting type

Set TileLayer.Type = Street to use street maps. The street maps can be zoomed in very near.

Figure 6-116. TileLayer.Type = Street.

Set TileLayer.Type = Satellite to use satellite imagery.

Figure 6-117. TileLayer.Type = Satellite.

https://developer.here.com/plans/api/consumer-mapping

Copyright LightningChart Ltd 2009-2023 179

Presenting series and other chart elements, like annotations, is possible.

Figure 6-118. Street maps with IntensityGridSeries presenting weather data.

6.34 StencilAreas

Demo examples: Maps with intensity series stencil; Chromaticity diagram, Silicon wafer map analysis

(WinForms only)

IntensityGridSeries, IntensityMeshSeries and Maps have StencilArea feature which allows masking in

or out areas of drawn data. For instance, if data is shown above a map, stencils can be used to limit the

visible data to certain map areas, such as countries. StencilArea can be applied by creating a new

StencilArea object, then defining its size as PointDouble2D -array via AddPolygon() or as a map layer

via AddMapLayerIndex(), and finally adding them to the series that should be masked.

There are two types of StencilAreas:

• AdditiveAreas creates a positive stencil mask - only data inside the area is drawn, while the

outside is clipped.

• SubtractiveAreas creates a negative stencil mask - data inside the area is clipped, while the

outside is drawn. Note that SubtractiveAreas are designed to work only together with

AdditiveAreas - without them no clipping is applied.

180 LightningChart® .NET User’s Manual, rev. 10.5

Whenever a StencilArea object is added to the list (AdditiveAreas or SubtractiveAreas),

InvalidateStencil() or InvalidateData() should be called for the respective series. It is also

recommended that the array of points defining the stencil is set in clockwise order.

 AdditiveAreas

Use AdditiveAreas to define the area that should be drawn. Everything outside it will be clipped.

// Defining an additive StencilArea to an IntensityGrid

PointDouble2D[] stencilPoints = new PointDouble2D[] {

new PointDouble2D(30, 5),

new PointDouble2D(30, 95),

new PointDouble2D(195, 95),

new PointDouble2D(195, 5)

};

StencilArea stencilArea = new StencilArea(_intensityGrid.Stencil);

stencilArea.AddPolygon(StencilPoints);

_intensityGrid.Stencil.AdditiveAreas.Add(stencilArea);

_intensityGrid.InvalidateStencil();

Figure 6-119. An IntensityGrid without any stencils on the top. On the bottom, the same grid with an
AdditiveArea created by using the code above.

Copyright LightningChart Ltd 2009-2023 181

 SubstractiveAreas

Use SubstractiveAreas to define areas which should not be drawn inside an AdditiveArea.

// Defining two substractive StencilAreas to an IntensityGrid

PointDouble2D[] pnt2 = new PointDouble2D[] {

new PointDouble2D(130, 70),

new PointDouble2D(130, 90),

new PointDouble2D(160, 90),

new PointDouble2D(160, 70),

};

StencilArea stencilArea2 = new StencilArea(_heatMap.Stencil);

stencilArea2.AddPolygon(pnt2);

_heatMap.Stencil.SubtractiveAreas.Add(stencilArea2);

_heatMap.InvalidateStencil();

PointDouble2D[] pnt3 = new PointDouble2D[] {

new PointDouble2D(50, 10),

new PointDouble2D(50, 25),

new PointDouble2D(90, 25),

new PointDouble2D(90, 10),

};

StencilArea stencilArea3 = new StencilArea(_heatMap.Stencil);

stencilArea3.AddPolygon(pnt3);

_heatMap.Stencil.SubtractiveAreas.Add(stencilArea3);

_heatMap.InvalidateStencil();

Figure 6-120. An IntensityGrid with two SubstractiveAreas, set by using the code above. Note that an AdditiveArea has
to be set before using SubstractiveAreas.

182 LightningChart® .NET User’s Manual, rev. 10.5

 Multiple StencilAreas

It is possible to set multiple StencilAreas, both additive and substractive ones. In case two or more

areas overlap, the areas are joined.

6.35 Data cursors

Starting from version 10.4, ViewXY has a built-in data cursor, which automatically tracks the closest series

value to the mouse cursor and shows it in a result table. The cursor consists of horizontal and vertical

hair cross lines, tracking point at the location of the closest data value, axis labels showing the current X-

and Y-values, and the result table, which besides the axis values also shows the series name and its color.

Data cursor can be enabled or disabled via Visible property. It is also possible to hide some of the cursor

components such as the lines or the axis labels individually by setting ShowHaircrossLines or ShowLabels,

or other respective “Show” properties based on what should be hidden, false. The appearance of the

cursor can also be modified via component specific properties. LabelFont modifies the axis label texts,

LineStyle can be used to customize the hair cross lines, and TrackingPointStyle allows altering the

tracking point. Results property contains all the options to modify the result table.

// Enables data cursor but hides its axis labels.

_chart.ViewXY.DataCursor.Visible = true;

_chart.ViewXY.DataCursor.ShowLabels = false;

// Modifying result table.

_chart.ViewXY.DataCursor.Results.Background.Color = Colors.DarkBlue;

Figure 6-121. Multiple StencilAreas are used. Some SubstractiveAreas overlap so the areas are joined. Transparent polygons
with visible borders are also drawn to mark the locations of the stencils.

Copyright LightningChart Ltd 2009-2023 183

Figure 6-122. Property tree of the data cursor.

Figure 6-123. Data cursor has been enabled. No individual components have been hidden.

Data cursor changes its behaviour depending on whether the tracked series has a visible line or just visible

data points (scatter plot). If the line is visible, the cursor finds the nearest series and its value vertically

in the cursor’s current X-position. If there are no lines visible, the cursor tracks the nearest data point in

any direction. Enabling SnapToNearestDataPoint overrides this making the cursor always finding the

nearest actual data point value in any direction.

184 LightningChart® .NET User’s Manual, rev. 10.5

It should be noted that using data cursor in demanding real-time applications can decrease the

performance significantly since the cursor is constantly calculating the nearest data value. To counter

this, the cursor has RealTimeTracking property, which when enabled increases the overall performance.

The drawback is that the cursor is updated less frequently and may seem laggy especially when the

mouse is moved around scrolling or sweeping chart.

Figure 6-124. Data cursor tracking an Intenstiy Grid. Besides X- and Y-values the cursor shows the grid’s Value and Color fields.

6.36 LineSeriesCursors

Demo examples: Point line; Multi-channel cursor tracking; Segments with splitters; Logarithmic axes

Line series cursors allow visual analysis of line series data by tracking the values by X coordinate. Series

values are can only be resolved with series implementing ITrackable interface (SampleDataSeries,

SampleDataBlockSeries, PointLineSeries, LiteLineSeries, DigitalLineSeries, AreaSeries, HighLowSeries).

For other series types, Y coordinate is not automatically tracked by cursors.

Add LineSeriesCursor object into LineSeriesCursors collection. Enable SnapToPoints to jump the cursor

from point to point. Set the cursor tracking style with Style property. When Style is set to PointTracking,

any tracking point style can be used, even a bitmap image. When using HairCrossTracking style, a

horizontal line is drawn at line series point Y value. If multiple points of same series hit in cursor location,

line is drawn in the middle of minimum and maximum points.

Copyright LightningChart Ltd 2009-2023 185

Figure 6-125. Line series cursors: Vertical point tracking cursor (cyan line and crosses), hair-cross tracking cursor (red lines)
and vertical full-length cursor without tracking (yellow line)

By enabling IndicateTrackingYRange a horizontal bar is drawn ranging from minimum to maximum of

the points hitting in the middle of the cursor.

Figure 6-126. Hair-cross cursor with Y range indicator (IndicateTrackingYRange = true).

186 LightningChart® .NET User’s Manual, rev. 10.5

 Solving the data values in the position of LineSeriesCursor

Demo examples: Multi-channel cursor tracking

The series implementing ITrackable interface can be solved by X screen coordinate or by X axis value.

Trackable series have methods for accurate and coarse value solving. The accurate method

SolveYValueAtXValue loops through data points if necessary and finds the nearest data point match.

The coarse method SolveYCoordAtXCoord uses cached rendering data of the series for solving the

matching Y screen coordinate.

6.36.1.1 Accurate method, solving Y value by X value using data points array

LineSeriesValueSolveResult result =

 series.SolveYValueAtXValue(cursor.ValueAtXAxis);

 if (result.SolveStatus == LineSeriesSolveStatus.OK)

 {

//PointLineSeries may have two or more points at same X value. If so,

center it between min and max

 yValue =(result.YMax + result.YMin) / 2.0;

 return true;

 }

Note! When cursor.SnapToPoints is disabled, the SolveYValueAtXValue returns interpolated value

between the points adjacent to it (the intersection of cursor line and the series line).

Figure 6-127. SolveYValueAtXValue interpolates the value between adjacent data points when SnapToPoints is disabled.

6.36.1.2 Coarse method, solving Y screen coordinate by X coordinate using data points array

LineSeriesCoordinateSolveResult result =

 series.SolveYCoordAtXCoord((int)Math.Round(fCoordX));

 if (result.SolveStatus == LineSeriesSolveStatus.OK)

 {

 fCoordY = (result.CoordBottom + result.CoordTop) / 2f;

 if (axisY.CoordToValue((int)Math.Round(fCoordY), out yValue) ==

 false)

 {

 return false;

 }

}

Copyright LightningChart Ltd 2009-2023 187

When the series holds a lot of data points, say > 100.000, it’s typically much faster to use the coarse

method. However, it can be very inaccurate if the chart size or Y segment height in pixels is low. The

coarse method’s screen coordinates can be converted into axis values by calling CoordToValue method

of X and Y axis.

It is a good practice to use an AnnotationXY object to display values next to the cursor, see 6.26

Figure 6-128. LineSeriesCursor used to track PointLineSeries. The values are shown in an AnnotationXY object.

 Advanced LineSeriesCursor features

LineSeriesCursor has two advanced features, which allow more control over which series are tracked and

how the tracking is done.

TrackLineSeries can be used to determine if the cursor should resolve and draw a track point for a series

implementing ITrackable interface. TrackLineSeries is defined as a predicate. For example, the following

tracks only series that are assigned to the first Y-axis.

cursor.TrackLineSeries = new Predicate<ITrackable>(TrackableSeriesSelection);

private bool TrackableSeriesSelection(ITrackable obj)

{

return (obj as SeriesBaseXY).AssignYAxisIndex == 0 ||

(bool)!checkBoxTrackLineSeries.IsChecked;

}

188 LightningChart® .NET User’s Manual, rev. 10.5

SolveYValue is a Func delegate type which can be used to override the cursor’s original Y-value solving and

tracking method. Input parameter is a series implementing ITrackable interface, while the output is a

LineSeriesCoordinateSolveResult struct. For instance, the following changes the cursor to track the

maximum Y-value between two cursor lines.

cursor.SolveYValue = CustomYValueSolver;

private LineSeriesCoordinateSolveResult? CustomYValueSolver(ITrackable series)

{

 PointLineSeries plSeries = series as PointLineSeries;

 AxisX xAxis = _chart.ViewXY.XAxes[0];

 int iMinIndex = 0;

 double dMinX = _chart.ViewXY.LineSeriesCursors[0].ValueAtXAxis;

 double dMaxX = _chart.ViewXY.LineSeriesCursors[1].ValueAtXAxis;

 for (int i = 0; i < plSeries.PointCount; i++)

 {

 if (dMinX <= plSeries.Points[i].X && plSeries.Points[i].X <= dMaxX &&

plSeries.Points[i].Y > dMaxY)

 {

 iMinIndex = i;

 dMaxY = plSeries.Points[i].Y;

 }

 }

 float fNearestX = xAxis.ValueToCoord(plSeries.Points[iMinIndex].X, false);

 float fCoordY = _chart.ViewXY.YAxes[0].ValueToCoord(dMaxY, false);

 return new LineSeriesCoordinateSolveResult()

 {

 NearestX = fNearestX,

 CoordBottom = fCoordY,

 CoordTop = fCoordY,

 MinIndex = iMinIndex,

 PointCount = 1,

 SolveStatus = LineSeriesSolveStatus.OK

 };

}

 Solving the data values from FreeformPointLineSeries

FreeFormPointLineSeries implements methods for accurate and coarse value solving, which are mostly

similar to the methods used for solving data values in the position of LineSeriesCursor for series

implementing the ITrackable interface.

Note! FreeformPointLineSeries does not implement ITrackable interface and therefore cannot be tracked

with LineSeriesCursor.

The accurate method SolveYValuesAtXValue solves all Y-values for the given X-axis value and returns an

iterable list of LineSeriesValueSolveResult-structs.

Copyright LightningChart Ltd 2009-2023 189

The coarse method SolveYCoordsAtXCoord solves all Y screen coordinates for given X screen coordinate

and returns an iterable list of LineSeriesCoordinateSolveResult-structs.

If the given X-axis value or X screen coordinate hits between points, the result(s) will be formed from the

interpolated value(s) / coordinate(s).

6.37 EventMarkers

Demo examples: Tracking markers; Map route; Heatmap color spread; Segments with splitters; Bubble

chart; Campbell diagram; Curve node editing

EventMarkers allow marking a point of interest, where something special occurred during real-time

monitoring, or if just wanting to mark a piece of data with a special annotation. Define the marker symbol

with Symbol property and a text label with Label property. Set the vertical position with VerticalPosition

property and use Offset to shift the object property if necessary. All markers must be assigned with

XValue, which sets the marker’s position on X axis.

To select the shape of the marker, set Symbol.Shape. Available shapes are Rectangle, Circle, Triangle,

Flag, FlagLightning, Cross, CrossAim, Bitmap, HollowBasic, HollowBasicActive, HollowHarmonic,

HollowActiveSideband, HollowSideband, HollowTailedActive and HollowTailed.

190 LightningChart® .NET User’s Manual, rev. 10.5

Figure 6-129. Markers in trading example.

 Chart event markers

ChartEventMarker collection allows adding chart markers. A chart marker can be used to indicate a point

of interest, like “Test person stood up”, “Capacitor bypassed”. Unlike series event markers, chart event

markers are not attached to a specific series. The markers can be dragged with mouse into another

location.

The position of a chart marker can be set via VerticalPosition, XValue and Offset -properties.

Furthermore, setting BindToXAxis true binds the marker to a specific X-axis. In practice, this makes the

marker to stay at its current X-value and move when for example the X-axis is panned. When BindToXAxis

is disabled, the marker is kept in the same chart position no matter how the axes are moved. If there are

several X axes, AssignXAxisIndex can be used set which axis the marker is bound to.

ClipInsideXRange can be used together with BindToXAxis enabled. It makes a marker to clip when a

specific X-axis value it is bound to is not within the visible X-axis range. This value can be set via XValue -

property. Moving the marker manually with mouse disables this setting. There is also ClipInsideGraph -

property, which determines if a chart marker can be drawn outside the graph area.

Copyright LightningChart Ltd 2009-2023 191

 Line series event markers

Line series have SeriesEventMarkers collection property. It can be used to assign series specific event

markers. The series event markers can be dragged with mouse to another location, while keeping the

event marker attached to series values. To enable this, marker’s VerticalPosition must be set to

TrackSeries. This is available for series implementing ITrackable interface.

By setting HorizontalPosition to SnapToPoints, the marker aligns itself horizontally to position of nearest

data point. HorizontalPosition = AtXValue allows placing the marker at any x value. Respectively,

VerticalPosition = AtYValue allows setting the marker vertically to any Y level.

In addition to normal set of shapes, SeriesEventMarker supports two special Symbol.Shape settings,

HollowYAxis and HollowYAxisActive, which allow vertical line with Y axis ticks projection. They have a

pixel wide vertical line which picks positions of MajorTicks and MinorTicks from the Y axis the series is

attached to. To adjust the tick lengths, edit YAxis.MajorDivTickStyle.LineLength and

YAxis.MinorDivTickStyle.LineLength properties.

Figure 6-130. Two special SeriesEventMarkers shapes: HollowYAxis and HollowYAxisActive. Very handy when making per-
series data cursors.

192 LightningChart® .NET User’s Manual, rev. 10.5

6.38 Persistent series rendering layers

Demo examples: Lines / points; Areas /high-lows

PersistentSeriesRenderingLayer can be used for extremely fast rendering of repetitive line/points data,

or line/points/high-low/area fill data that is plotted in same X and Y range over and over again.

For example, consider a case of FFT monitoring: Every second 20 new data strips are received. The newest

data should be visible as well as all the historic traces. But the monitoring lasts for hours. By rendering

this kind of data with regular rendering, 20 * 60 * 60 = 72000 new line series are needed every hour. The

PC will run out of memory probably before 1 hour is monitored. It is certain that rendering will slow down

so badly that it’s not usable anymore.

PersistentSeriesRenderingLayer is kind of a bitmap, that allows adding rendering data incrementally in

it. It keeps the graphics until cleared by command. This way, each update round, only one series needs

to be rendered on the layer, followed by the layer rendering on the screen. CPU load or memory footprint

doesn’t rise. If existing data should be faded away gradually, it can be done by multiplying the alpha of

the bitmap pixels.

It is possible to create as many PersistentSeriesRenderingLayer objects as needed, and any count of

series can be rendered on each of them, any update round.

Figure 6-131. Persistent layer shows historical traces, in green color. A regular PointLineSeries is shown over it, in red color.

Copyright LightningChart Ltd 2009-2023 193

Figure 6-132. Persistent layer shows historical traces, in green color. MultiplyAlpha method is called before updating new
data in the rendering layer making the oldest traces fade away.

 Creating the layer

PersistentSeriesRenderingLayer is not a sub-property of ViewXY and can’t be added with Visual Studio’s

property grid. PersistentSeriesRenderingLayer objects must be created in code. Create it as follows:

using Arction.[edition].Charting.Views.ViewXY;

PersistentSeriesRenderingLayer layer = new PersistentSeriesRenderingLayer

(m_chart.ViewXY, m_chart.ViewXY.XAxes[0]);

By supplying ViewXY object as parameter, it binds the layer in ViewXY. Supply the same XAxis object that

is used with the series rendered on it.

Multiple layers will render in the order of creation with the chart.

194 LightningChart® .NET User’s Manual, rev. 10.5

 Clearing the layer

layer.Clear() clears the layer and initializes the color with ARGB=(0,255,255,255).

layer.Clear(Color color) clears the layer with given color. In most cases, it’s most useful to set the same

color used in the background, but set its A = 0. With black background, use

layer.Clear(Color.FromArgb(0,0,0,0));

 Adjusting layer alpha

MultiplyAlpha(value) allows making the layer more transparent or opaquer. Multiplying effects every

pixel in the layer separately.

By supplying value < 1, transparency will be increased (decays the layer).

By supplying value > 1, opacity will be increased (brings the layer more visible).

Takes no effect with value of 1.

For example, MultiplyAlpha(0.8) sets the alpha to 80% of existing alpha. MultiplyAlpha(2) adjust it to

200%.

 Rendering data into the layer

Render the data into the layer by using any of PointLineSeries, SampleDataSeries,

FreeformPointLineSeries, HighLowSeries or AreaSeries objects. They can be series that have been added

into ViewXY.PointLineSeries, ViewXY.SampleDataSeries, ViewXY.FreeformPointLineSeries,

ViewXY.HighLowSeries or ViewXY.AreaSeries collection. A temporary series that have not been added

into these collections can also be used. Fill the data in the series as usual (see chapter 6.6.4 for

PointLineSeries, 6.8.2 for SampleDataSeries, 6.11 for FreeformPointLineSeries, 6.16.4 for HighLowSeries

and 6.17.1 for AreaSeries).

layer.RenderSeries(PointLineSeriesBase series): Render one series on the layer.

layer.RenderSeries(List<PointLineSeriesBase> seriesList): Render all given series on the layer. More

efficient than calling layer.RenderSeries(PointLineSeriesBase series) for each series separately.

Note! All the given series will be rendered on the layer, even if their Visible is set to False.

Note! The X axis that used with the series must be the same as the one supplied for

PersistentSeriesRenderingLayer constructor. Otherwise, the series object will be skipped.

Copyright LightningChart Ltd 2009-2023 195

Note! RenderSeries is for rendering INTO the layer. The layer itself will be rendered just before regular

series (PointLineSeries, SampleDataSeries, FreeformPointLineSeries, HighLowSeries, AreaSeries).

 Disposing the layer

To dispose the layer and prevent it from rendering with the chart, call layer.Dispose().

 Anti-aliasing data in the layer

To anti-alias the data in the chart rendering stage, set layer.AntiAliasing to True. This enables anti-

aliasing also if the hardware doesn’t support it.

 Getting list of layers

ViewXY.GetPersistentSeriesRenderingLayers() returns list of all created layers, including

PersistentSeriesRenderingIntensityLayers.

 Some layer limitations to be aware of

Due to its special rendering technique, please keep these limitations in mind:

- X axis ScrollMode must be set to None. Real-time scrolling of X axis is not possible in this approach.

- Zooming, panning, axis adjustment and chart resize will cause the image to be in un-sync with axis

ranges. These features should be disabled when using persistent plotting, or the application logic made

so that it clears the layer and recreates temporarily the older line series for new layer rendering (there

are event handlers for axis range change and resize).

- Chart resizing will clear the layer, as well as resuming from Windows desktop lock state.

- Mouse interactivity is not supported on the series rendered only on the layer

- EMF/WMF/SVG export, copy to clipboard in vector format, and print in vector format don’t support the

layer. Only raster formats are supported.

196 LightningChart® .NET User’s Manual, rev. 10.5

6.39 Persistent series rendering intensity layers

Demo examples: Intensity persistent layer, signal

PersistentSeriesRenderingIntensityLayer allows collecting traces into a layer and coloring it by the hit

count per pixel. The coloring is made by using a value-range palette. The traces can be used with the

same series types as in PersistentSeriesRenderingLayer (see chapter 6.38). They are very much similar

to it, main difference being the coloring. When rendering a trace in a location of a pixel again with second

rendering call, the intensity of it grows, increasing its value in the value-range palette.

 Figure 6-133. Persistent intensity layer highlights areas of concentrated activity, in this case in yellow and red.

Figure 6-134. Repetitive signal trace is rendered in the same region. On the left, only a couple of traces have been rendered
on the layer, showing all colors in blue. On the middle, a lot of traces have been rendered, but mostly on different coordinates.
In the intersections of the traces, the hit count exceeds the trace count of 10 defined in the palette for yellow color threshold.
In the rightmost image, hundreds of traces have been rendered in total, and intersections start to exceed threshold defined
for red color.

Copyright LightningChart Ltd 2009-2023 197

 Creating the layer

The PersistentSeriesRenderingIntensityLayer is not a sub-property of ViewXY and can’t be added with

Visual Studio’s property grid. PersistentSeriesRenderingIntensityLayer objects must be created in code.

Create it as follows:

using Arction.LightningChart.Views.ViewXY;

PersistentSeriesRenderingIntensityLayer layer = new

PersistentSeriesRenderingIntensityLayerngLayer(m_chart.ViewXY,

m_chart.ViewXY.XAxes[0]);

 Clearing the layer

layer.Clear() clears the layer and resets the counters.

 Changing palette colors

Define the palette type and steps in ValueRangePalette property of the layer. ValueRangePalette.Type

= Gradient makes a gradient coloring, ValueRangePalette.Type = Uniform makes the layer render with

discrete color steps.

 Adjusting the intensity effect of new trace and decay of old traces

Use NewTraceIntensity property to control how great intensity effect the new trace rendered with

RenderSeries call gets. Typical value is 1…100, depending on how fast the color range is set to fill up with

the traces.

Use HistoryIntensityFactor to adjust the decay speed of the old traces. Typical value is in range of 0.5 –

0.99.

Note that setting HistoryIntensityFactor itself doesn’t update the layer until the next call of RenderSeries.

 Rendering data into the layer

Render a PointLineSeries, FreeformPointLineSeries, SampleDataSeries, HighLowSeries or AreaSeries to

the layer by RenderSeries method.

198 LightningChart® .NET User’s Manual, rev. 10.5

layer.RenderSeries(PointLineSeriesBase series): Render one series on the layer.

layer.RenderSeries(List<PointLineSeriesBase> seriesList): Render all given series on the layer. No

performance gain over layer.RenderSeries(PointLineSeriesBase series) though.

When the data is updated into the layer, NewTraceIntensity is used for the new trace. Old trace data is

decayed with HistoryIntensityFactor at the same time. layer.RenderSeries(List<PointLineSeriesBase>

seriesList) decays old traces after every series object.

 Disposing the layer

To dispose the layer and prevent it from rendering with the chart, call layer.Dispose().

 Anti-aliasing data in the layer

To anti-alias the data in the chart rendering stage, set layer.AntiAliasing to True. It enables the anti-

aliasing also if the hardware doesn’t support it.

 Getting list of layers

ViewXY.GetPersistentSeriesRenderingLayers() returns list of all created layers, including

PersistentSeriesRenderingLayers.

6.40 Custom controls – Zoom bar

Zoom bar is a custom XY chart, that can be used to get an overview of the whole dataset and to zoom

the chart to specific areas. When a Zoom bar is created, it takes the chart it is referring to as a parameter.

Since Zoom bar is a separate instance of LightningChart, it can be placed on a different container than

the main chart. CustomControls namespace needs to be used in order to use Zoom bars.

using Arction.Wpf.Charting.CustomControls;

// Creating a LightningChart object, then adding a Zoom bar referring to it.

LightningChart _chart = new LightningChart();

mainGrid.Children.Add(_chart);

zoomBarGrid.Children.Add(new ZoomBar(ref _chart));

Copyright LightningChart Ltd 2009-2023 199

Zoom bar automatically shows all the series in the main grid. However, ZoomBarOptions, which contains

all properties to control Zoom bar behaviour, has SeriesToUse option that allows hiding specific series

types. It is possible to hide the line while keeping the points visible and vice versa. By default, points are

hidden in Zoom bar, only the line is visible. Note that if the line or the points are not visible in the main

chart, they cannot be shown in the Zoom bar either.

// Hiding all PointLineSeries lines in the Zoom bar chart.

zb.ZoomBarOptions.SeriesToUse.PointlineSeries.LineVisible = false;

Figure 6-135. A Zoom bar has been added below the main chart, giving an overview of the whole data. Data points of the
Point Line Series are visible in the main chart but not for the respective series in the zoom bar.

In real-time charts, where new data is constantly added, the Zoom bar is unable to update itself

automatically. In these cases, series specific add data method such as AddDataToPointLineSeries() or

AddDataToHighLowSeries() should be called with the added data points as a parameter.

// Updating series in Zoom bar. The first parameter is the series index.

zoomBar.AddDataToPointLineSeries(0, seriesPointArray);

6.41 Custom controls – Violin plot

Violin plot is a custom XY chart, which depicts distributions of numeric data for one or more groups using

density curves. It is an own instance of LightningChart, meaning it needs to be added to a parent

container such as grid. CustomControls namespace needs to be used in order to create Violin plots.

using Arction.Wpf.Charting.CustomControls;

ViolinPlot _violin = new ViolinPlot();

containerGrid.Children.Add(_violin);

200 LightningChart® .NET User’s Manual, rev. 10.5

Adding data to Violin plot is done via AddGroupData() method. The method takes several parameters

regarding its size and position such as minimum, maximum and width, as well as styling options such as

color and label text. The last parameter of the method is the actual data points as a PointDouble2D

array. Several violins can be added to the same plot by calling AddGroupData() many times.

// Adding data to violin plot.

_Violin.AddGroupData(45, 95, 1, 0.5, "Group A", Colors.Yellow, "A",

pointArray1);

_Violin.AddGroupData(54, 79, 2, 0.5, "Group B", Colors.Magenta, "B",

pointArray2);

_Violin.AddGroupData(56, 97, 3, 0.5, "Group C", Colors.Orange, "C",

pointArray3);

The Violin plot’s axis titles can be changed with SetXaxisTitle() and SetYaxisTitle() methods. Ypadding()

can be used to set how much vertical empty space is left between the violins and the chart edges.

The regular LightningChart object the Violin plot is based on can be accessed via GetInnerChart() method.

This allows modifying for example the polygon objects the violins are build of.

Figure 6-136. A Violin plot has been created. Four violins have been added via AddDataGroup() method.

Copyright LightningChart Ltd 2009-2023 201

7. View3D

View3D allows visualizing data in 3D space. 3D model can be zoomed, rotated and lit up with various

ways. Different series types can be placed into the same 3D view to make a combined visualization.

Figure 7-1. View3D object main tree.

202 LightningChart® .NET User’s Manual, rev. 10.5

7.1 3D model and dimensions

Figure 7-2. 3D model positive and negative directions.

3D model is constructed in the center of 3D world. Dimension magnitudes define the size of the model

box in 3D space. Walls and axis sizes are defined with this dimension box. Use the Dimensions property

to set each dimension magnitude.

When camera rotation is not defined, positive X direction is to the right, positive Y dimension upwards

and positive Z direction inwards to the screen.

 World coordinates

Some 3D objects use “World coordinates”, not axis values. For example, lights are positioned this

way to be independent from axis ranges. World coordinates can be called also as “3D model space

coordinates”.

The origin [0,0,0] is in the center of the model. The actual 3D model space ranges from [-

Dimensions.X/2 to Dimensions.X/2], [-Dimensions.Y/2 to Dimensions.Y/2] and [-Dimensions.Z/2 to

Dimensions.Z/2].

LightningChart provides methods to convert values between series values, axis values, world

coordinates and screen coordinates. See the demo application examples and help documentation

for details.

Y+

Z+

Z-

Y-

X+X-

Copyright LightningChart Ltd 2009-2023 203

Y+ Z+

X+

Figure 7-3. Example of 3D view setup. Dimensions are set to X=100, Y=40, Z=80. Walls visible: left, bottom, back. Perspective
camera is used.

7.2 Walls

Walls (WallOnFront, WallOnBack, WallOnTop, WallOnBottom, WallOnLeft, WallOnRight) are used

to present axis grids and gridstrips and to give a base for the axes. By default, bottom, left, right, back

and front walls are visible. Their AutoHide property is set true. When rotating the view, the

obstructing walls are temporarily hidden so that they don’t block the view of chart contents. To force

a wall visible, set Visible = true and AutoHide = false.

Use XGridAxis, YGridAxis, ZGridAxis, GridStripColorX, GridStripColorY, GridStripColorZ and

GridStrips properties to select from which axes the grid is applied, and to modify the coloring of the

grid strips. The available properties depend on the wall orientation. FullTransparent property allows

showing only the grid while hiding the solid wall. Note that even if FullTransparent is enabled, the

grid still follows Visible and AutoHide properties of the wall.

204 LightningChart® .NET User’s Manual, rev. 10.5

7.3 FrameBox

A simplified 3D box presentation can be used instead of walls. Set Visible = false for every wall, then

set FrameBox.Style = AllEdges. Set the color or the frame with FrameBox.LineColor.

 Figure 7-4. FrameBox visible, walls are hidden.

7.4 Camera

Figure 7-5. Camera properties.

Copyright LightningChart Ltd 2009-2023 205

Camera type, location, distance and target together determine the 3D viewpoint. Use RotationX,

RotationY, RotationZ and ViewDistance to set the camera position in the 3D model space. Target the

camera to preferred direction by setting the Target property.

Select projection type with Projection property.

• Perspective, shows a realistic projection.

• Orthographic, projection type used in scientific and engineering applications. This selection is

recommended over OrthographicLegacy.

• OrthographicLegacy, (equivalent to OrthoGraphicCamera = True in LightningChart v.8.3 and

earlier). This is slower to render after zooming compared to Orthographic. It maintains the sizes

of the 3D objects, if they are defined in 3D world coordinates (not axis values). Also, the thickness

of the walls stays the same when zooming. Zooming changes the dimensions but does not affect

ViewDistance.

RotationX, RotationY and RotationY can be limited by setting boundaries via RotationXMinimum,

RotationXMaximum, RotationYMinimum, RotationYMaximum, RotationZMinimum and

RotationZMaximum properties.

Figure 7-6. Perspective camera presentation in 3D space.

Figure 7-7. Perspective and orthographic camera views in 3D space.

206 LightningChart® .NET User’s Manual, rev. 10.5

Zoomed view in Orthographic and OrthographicLegacy differ as follows:

Orthographic

Figure 7-8. Orthographic projection type. On the left, unzoomed. On the right, zoomed in. Airplane (MeshModel3D) object
size grows on the screen along with other objects.

OrthographicLegacy

Figure 7-9. OrthographicLegacy. On the left, unzoomed. On the right, zoomed in. Airplane (MeshModel3D, see 7.14) object
size stays the same but 3D dimensions are changed.

Copyright LightningChart Ltd 2009-2023 207

 Predefined cameras

Demo examples: Cameras and lights

Use SetPredefinedCamera method of View3D.Camera to set one of the predefined cameras.

// Setting predefined camera orientation

chart.View3D.Camera.SetPredefinedCamera(PredefinedCamera.BackOrthographic);

 Camera orientation mode

LightningChart v8.4 added a new camera orientation mode with improved camera orientation definition.

The new mode called ZXY_Extrinsic (the name defines in which order the dimensions are calculated) is

now set to be the default orientation mode. It fixes many rotation-based issues especially near the poles

of the chart (i.e. camera on top of the chart). The old orientation mode, XYZ_Mixed, is still available but

will most likely become deprecated at some point in the future. Orientations can be accessed via

View3D.Camera.OrientationMode.

Rotations are also modified by this change. With the new camera orientation mode, one of the axis

directions (world unit vectors) is used as the horizontal mouse rotation axis. This is the axis of which the

camera is rotated around. Axis determination is automatically done when RotationX, RotationY or

RotationZ properties are changed. Closest axis to the camera’s up direction is selected as the rotation

axis, so that the rotations feel as natural as possible on all occasions.

The new orientation and rotation model allow views in the 3D scene that were previously impossible.

7.5 Lights

Lights can be freely positioned anywhere in the 3D model space. Several lights can be added into Lights

collection property. There are two different light types: Directional and PointOfLight.

Figure 7-10. Directional light and point of light.

208 LightningChart® .NET User’s Manual, rev. 10.5

Note! Some series types allow suppressing lighting totally from its surface via SuppressLighting

property. Check it’s not enabled if the series should be correctly lit. Surface series have LightedSurface

property, which selects the surface side that is correctly lit.

Note! Placing all the lights inside the 3D model box can make the wall edges appear very dark, possibly

making axis ticks hardly visible. Adjust axis tick coloring in such case.

 Directional light

In Directional light, the light rays are parallel, and the light intensity does not attenuate as the

distance increases. The light flux gets direction from Location and Target properties.

LocationFromCamera property allows using to the location of the camera as a source of light.

 Point of light

In PointOfLight intensity attenuates as the distance grows. Use AttenuationConstant,

AttenuationLinear and AttenuationQuadratic properties to control the attenuation over distance.

Target is irrelevant with this light type, as the light is distributed equally to all directions.

 Lights and materials

All 3D objects have a Material property. Material tells how to react to lights. Material’s DiffuseColor

reacts with DiffuseColor of a light. Material’s SpecularColor reacts with light’s SpecularColor. Diffuse

color can be understood as a matte base color, while specular color is the color that reflects off the

lit surface. Using high SpecularPower gives the object a metallic look.

Surface series have ColorSaturation property, valid range is 0…100%. High value boosts the surface

fill colors and reduces the shading effect.

Figure 7-11. The surface series on the left has ColorSaturation = 50%. On the right, ColorSaturation = 85%.

Copyright LightningChart Ltd 2009-2023 209

 Predefined lighting schemes

Demo examples: Cameras and lights

Use SetPredefinedLightingScheme method of View3D to select a built-in predefined lighting scheme.

Figure 7-12. Predefined ‘DiscoCMY’ scheme in use. The scheme is composed from three differently colored PointOfLights near the
ceiling. The spheres and cones are made with PointLineSeries3D.

7.6 Axes

For each dimension, there are two axes: primary and secondary. In other words, View3D has the

following axis properties available: XAxisPrimary3D, XAxisSecondary3D, YAxisPrimary3D,

YAxisSecondary3D, ZAxisPrimary3D and ZAxisSecondary3D.

In general, the 3D axes behave very much like ViewXY’s axes. Many of the properties and methods are

similar.

210 LightningChart® .NET User’s Manual, rev. 10.5

 Location

The axes can be positioned in 3D model box corners. Use Location property of an axis to adjust the

position.

• For X axis, the Location options are: BottomFront, BottomBack, TopFront and TopBack.

• For Y axis, the Location options are: FrontLeft, FrontRight, BackLeft and BackRight.

• For Z axis, the Location options are: BottomLeft, BottomRight, TopLeft and TopRight.

Figure 7-15. Secondary axes set visible and their locations and colors set arbitrarily. Secondary Y axis ScaleType set to
Logarithmic.

Figure 7-14. Default axis location setup, XAxisPrimary at
BottomFront, YAxisPrimary at FrontLeft and
ZAxisPrimary in BottomRight.

Figure 7-13. ZAxisPrimary location set to BottomLeft.

Copyright LightningChart Ltd 2009-2023 211

 Orientation

Each axis can be oriented in two planes. This affects the position and orientation of both axis ticks and

value labels.

• X axis: XY and XZ planes

• Y axis: XY and YZ planes

• Z axis: XZ and YZ planes

 CornerAlignment

The axis alignment in 3D model box corners can be changed with CornerAlignment property. Use

MajorDivTickStyle and MinorDivTickStyle Alignment properties to control the text alignment.

Figure 7-18. Only Y axis is visible in this example. First figure: Y Axis CornerAlignment is set to Inside. Alignment properties in
MajorDivTickStyle and MinorDivTickStyle are set to Near. Second figure: CornerAlignment is set to AtCorner. Third picture:
CornerAlignment is set to Outside.

Figure 7-16. X axis orientation is set to XY, Y axis
orientation to XY, Z axis orientation to XZ.

Figure 7-17. Y axis orientation stays same, but X axis orientation
is changed to XZ and Z axis orientation is changed to ZY plane.

212 LightningChart® .NET User’s Manual, rev. 10.5

7.7 Margins

From LightningChart v.8.4 onwards, View3D supports margins. Similarly to ViewXY, when

AutoAdjustMargins is set true, the graph size is adjusted so that there’s enough space for all the axes

and chart title. If it is disabled, View3D.Margins property applies allowing setting margins manually. By

default, AutoAdjustMargins is set false.

View3D.MarginsChanged event can be set to trigger when a margin has been changed because of for

example resizing it.

The contents of the view are automatically clipped outside the margins. All contents are clipped other

than the chart title, annotations and legend boxes as their position is defined in screen coordinates,

allowing them to be freely positioned on the margins as well. A one-pixel wide border rectangle, Border,

can be drawn to display where the margins are. By default, the border is not visible in View3D. The color

of the rectangle can be changed via Border.Color.

Figure 6-19. On the left, the graph has no margins (all margins set to 0). On the right, margins are set and the content is clipped
outside them. Border.Visible is set True to mark where the margins of the view are.

7.8 3D series, general

View3D’s series allow data visualization in different ways and formats. All series are bound to axis value

ranges. For each dimension, the series can be selected to bind to primary or secondary axis. Use

XAxisBinding, YAxisBinding and ZAxisBinding properties to control that.

Copyright LightningChart Ltd 2009-2023 213

7.9 PointLineSeries3D

Demo examples: Scatter points; Point lines; Points tracking; Point cloud; Parallel coordinates chart; Multi-

colored 3D point-line

PointLineSeries3D allows presenting points and line in 3D space. For points, there are many basic 3D

shapes available. Points are connected together with a line, if LineVisible property is set true.

Figure 7-20. A PointLineSeries3D example. PointStyle’s Shape is set to Sphere.

 Point styles

Points can be shown as real 3D points, or as 2D shapes.

214 LightningChart® .NET User’s Manual, rev. 10.5

Figure 7-21. PointStyle property tree. ShapeType can be used to switch between 2D and 3D shapes.

Figure 7-22. Red crosses have ShapeType = Shape2D. Teal and Green objects have ShapeType = Shape3D.

Note! 2D shapes are rendered on top of all 3D objects and they don't have any support for hiding them

based on other objects visibility.

Copyright LightningChart Ltd 2009-2023 215

 Line styles

Figure 7-23. LineStyle properties.

The lines can be rendered as shaded 3D lines or as a one pixel wide hair line.

When having a lot of data in the series, setting LineOptimization = Hairline is recommended to

avoid performance issues.

Figure 7-24. Yellow line: LineStyle.LineOptimization = Hairline. Red Line: LineStyle.LineOptimization =
NormalWithShading.

In addition to LineStyle settings, PointLineSeries3D has ClosedLine -property which when enabled,

automatically connects the first and the last data points of the series. This property is available

from LightningChart version 9.0 onwards.

// Connecting the first and the last points
pointLineSeries3D.ClosedLine = true;

For optimizing semi-transparent lines, see chapter 7.10.9.

 Adding points

PointLineSeries3D supports three different point formats:

• Points property (SeriesPoint3D array)

• PointsCompact property (SeriesPointCompact3D array)

• PointsCompactColored property (SeriesPointCompactColored3D array)

216 LightningChart® .NET User’s Manual, rev. 10.5

PointsCompact and PointsCompactColored structures are very memory efficient, allowing up to 100

million data points visualization with simple point styles. Set the point format via PointsType property.

7.9.3.1 Points

By using Points property, all the advanced coloring options of points are supported. SeriesPoint3D structure

consists of the following fields:

double X: X axis value

double Y: Y axis value

double Z: Z axis value

Color color: individual data point color, only applies when IndividualPointColors is

 enabled, or MultiColorLine is enabled.

float sizeFactor: size factor multiplies the size defined by PointStyle.Size. Only applies when

 using IndividualPointSizes is enabled.

object Tag: freely assignable auxiliary object, for example to attach some details.

Series points must be added in code. Use AddPoints(…) method to add points to the end of existing

points.

SeriesPoint3D[] pointsArray = new SeriesPoint3D [3];

pointsArray [0] = new SeriesPoint3D (50, 50, 50);

pointsArray [1] = new SeriesPoint3D (30, 50, 20);

pointsArray [2] = new SeriesPoint3D (80, 50, 80);

chart.View3D.PointLineSeries3D[0].AddPoints(pointsArray); //Add points to the

end

To set whole series data at once while overwriting old points, assign the new point array directly:

chart.View3D.PointLineSeries[0].Points = pointsArray; //Assign the points

array

7.9.3.2 PointsCompact

PointsCompact property enables low memory consumption, which is important when having a lot of

data points.

SeriesPointCompact3D structure consists of the following fields:

float X: X axis value

float Y: Y axis value

float Z: Z axis value

Copyright LightningChart Ltd 2009-2023 217

SeriesPointCompact3D[] pointsArray = new SeriesPointCompact3D[3];

pointsArray [0] = new SeriesPointCompact3D(50, 50, 50);

pointsArray [1] = new SeriesPointCompact3D(30, 50, 20);

pointsArray [2] = new SeriesPointCompact3D(80, 50, 80);

chart.View3D.PointLineSeries3D[0].AddPoints(pointsArray); //Add points to the

end

To set whole series data at once while overwriting old points, assign the new point array directly:

chart.View3D.PointLineSeries[0].PointsCompact = pointsArray; //Assign the

points array

7.9.3.3 PointsCompactColored

PointsCompactColored property enables low memory consumption, important when having a lot of

data points, but still allows coloring the points with individual colors.

SeriesPointCompactColoured3D structure consists of the following fields:

float X: X axis value

float Y: Y axis value

float Z: Z axis value

int Color: Color of the point

SeriesPointCompactColored3D[] pointsArray = new

SeriesPointCompactColored3D[3];

pointsArray [0] = new SeriesPointCompactColored3D(50, 50, 50,

Color.Blue.ToArgb());

pointsArray [1] = new SeriesPointCompactColored3D(30, 50, 20,

Color.Red.ToArgb());

pointsArray [2] = new SeriesPointCompactColored3D(80, 50, 80,

Color.Green.ToArgb());

chart.View3D.PointLineSeries3D[0].AddPoints(pointsArray); //Add points to the

end

To set whole series data at once while overwriting old points, assign the new point array directly:

chart.View3D.PointLineSeries[0].PointsCompactColored = pointsArray; //Assign

the points array

218 LightningChart® .NET User’s Manual, rev. 10.5

 Coloring points individually

By setting IndividualPointColors = True, the color fields of points apply instead of Material.DiffuseColor.

 Figure 7-25. IndividualPointColors in use.

Note! Individual point coloring is not supported when having PointsType = PointsCompact.

 Setting points sizes individually

By setting IndividualPointSizes = True, sizeFactor fields from the points take effect. The factor multiplies

the size defined in PointStyle.Size.

 Figure 7-26. IndividualPointSizes in use.

Note! Individual point sizes are not supported when having PointsType = PointsCompact, or

PointsCompactColored.

Copyright LightningChart Ltd 2009-2023 219

 Multi-coloring line

To color the line with given data point colors, set MultiColorLine = True. The chart interpolates the color

gradients between adjacent points.

Figure 7-27. MultiColorLine enabled.

Note! MultiColorLine is not supported when having PointsType = PointsCompact.

 Displaying millions of scatter points

Demo examples: Point cloud

To be able to show a very high count of scatter points, set PointsOptimization = Pixels. Then each series

point will be rendered as a single pixel. When having to show 10 million or 100 million data points, use

the PointsCompact (see 7.9.3.2) or PointsCompactColored (see 7.9.3.3) approach to keep memory

requirements functional.

Figure 7-28. Millions of scatter points. LineVisible = False, PointsVisible = True, PointsOptimization = Pixels.

220 LightningChart® .NET User’s Manual, rev. 10.5

Figure 7-29. IndividualPointsColoring = True, using PointsCompactColored, LineVisible = False, PointsVisible = True. 120
million of scatter points.

Millions of data points can be most efficiently visualized with rectangles. When using

PointsCompactColored or PointsCompact, the point size can be controlled with

PointStyle.Shape2D.Width and PointStyle.Shape2D.Height.

Figure 7-30. PointStyle.Shape2D.Width = 20 and PointStyle.Shape2D.Height = 10.

Copyright LightningChart Ltd 2009-2023 221

7.10 SurfaceGridSeries3D

Demo examples: Simple 3D surface grid; Surface grid, flat projections; Surface grid, value coloring; Surface

grids, water and ground

SurfaceGridSeries3D allows visualizing data as a 3D surface. In SurfaceGridSeries3D, nodes are equally

spaced in X dimension, and in Z dimension as well.

Figure 7-31. Surface grid series with default style. Height data is made with a sine formula. Legend box shows the height
coloring intervals.

Figure 7-32. Surface grid nodes. SizeX = 5, SizeZ = 7.

RangeMinX RangeMaxX

row0

RangeMaxZ

RangeMinZ

row1

row2

row3

row4

row5

row6

col0 col1 col2 col3 col4

222 LightningChart® .NET User’s Manual, rev. 10.5

Node distances are automatically calculated as

𝑛𝑜𝑑𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋 =
RangeMaxX − RangeMinX

SizeX − 1

𝑛𝑜𝑑𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑍 =
RangeMaxZ − RangeMinZ

SizeZ − 1

 Setting surface grid data

• Set X range by using RangeMinX and RangeMaxX properties, to order the minimum and maximum value

based on assigned X axis.

• Set Z range by using RangeMinZ and RangeMaxZ properties, to order the minimum and maximum value

based on assigned Z axis.

• Set SizeX and SizeZ properties to give the grid a size as columns and rows.

• Set Y values for all nodes:

Method, with Data array index

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)

{

 for (int nodeIndexZ = 0; nodeIndexZ < rowCount; nodeIndexZ ++)

 {

 Y =//some height value.

 gridSeries.Data[iNodeX, iNodeZ].Y = Y;

 }

}

 gridSeries.InvalidateData(); // Notify to refresh when the new values are ready

Alternative method, using SetDataValue

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)

{

 for (int nodeIndexZ = 0; nodeIndexZ < rowCount; nodeIndexZ ++)

 {

 Y =//some height value

 gridSeries.SetDataValue(nodeIndexX, nodeIndexX,

 0, //X value ís irrelevant in grid

 Y,

0,//Z value is irrelevant in grid

Color.Green); //Source point colors are not used in this

example, so use any color here

 }

}

 gridSeries.InvalidateData(); // Notify to refresh when the new values are ready

Copyright LightningChart Ltd 2009-2023 223

 Creating surface from bitmap file

Demo examples: Large surface

Surfaces can be created from bitmap images by using SetHeightDataFromBitmap method. The

surface gets the size of the bitmap (if no anti-aliasing or resampling is used). For each bitmap image

pixel, Red, Green and Blue values are summed. The greater the sum, the higher will be the height

data value for that node. Black and dark colors get lower values while bright and white colors get

higher values.

Figure 7-33. Source bitmap and calculated surface height data. Dark values stay low while bright values get higher in the
surface.

 Fill styles

Use Fill property to select the filling style of the surface. The following options are available:

• None: By using this, no filling is applied. This selection is useful with wireframe meshes.

• FromSurfacePoints: The colors of the Data property nodes are used.

• Toned: ToneColor applies

• PalettedByY: Coloring by Y values by palette, see chapter 7.10.4.

• PalettedByValue: Coloring by SurfacePoint's Value fields by palette, see chapter 7.10.4.

• Bitmap: Bitmap image is stretched to cover the whole surface. Set the bitmap image in

BitmapFill property. BitmapFill property has sub-properties to mirror the image vertically and

horizontally.

224 LightningChart® .NET User’s Manual, rev. 10.5

Figure 7-34. FromSurfacePoints fill. Color per data point. Figure 7-35. Toned fill.

Figure 7-37. Bitmap fill. Figure 7-36. PalettedByY

Figure 7-38. PalettedByValue.

Copyright LightningChart Ltd 2009-2023 225

 Contour palette

ContourPalette property allows defining color steps for height coloring. ContourPalette can be used for:

• Fill (see chapter 7.10.3)

• Wireframe mesh (see chapter 7.10.5)

• Contour lines (see chapter 7.10.6)

An unlimited count of steps can be defined for contour palette. Each step has a height value and a

corresponding color.

The palette includes MinValue, Type and Steps properties. For Type, there are two choices: Uniform and

Gradient. The contour palette of figure 7-39 shows:

• MinValue: 0

• Type: Gradient

• Steps:

• Steps[0]: MaxValue: 25, Color: Red

• Steps[1]: MaxValue: 50, Color: Blue

• Steps[2]: MaxValue: 75, Color: Lime

• Steps[3]: MaxValue: 100, Color: White

The height values below first step value are colored with first step’s color.

Figure 7-39. Surface grid series contour palette Type is set to Gradient.

226 LightningChart® .NET User’s Manual, rev. 10.5

 Wireframe mesh

Use WireframeType to select the wireframe style. The options are:

• None: no wireframe

• Wireframe: a solid color wireframe. Use WireframeLineType.Color to set the color.

• WireframePalettedByY: wireframe coloring follows SurfacePoint's Y field ContourPalette (see

chapter 7.10.4).

• WireframePalettedByValue: wireframe coloring follows SurfacePoint's Value field,

ContourPalette (see chapter 7.10.4).

• WireframeSourcePointColored: wireframe coloring follows the color of the surface nodes

• Dots: wireframe lines consist of solid color dots.

• DotsPalettedByY: wireframe lines consist of dots colored by ContourPalette according to Y field

of SurfacePoints.

• DotsPalettedByValue: wireframe lines consist of dots colored by ContourPalette according to

Value field of SurfacePoints.

• DotsSourcePointColored: wireframe lines consist of dots whose coloring follows the color of the

surface nodes.

Wireframe line style (color, width, pattern) can be edited via WireframeLineStyle.

Note! Palette colored wireframe lines and dots may conflict with WireframeLineStyle.Pattern

settings, for example Dash linestyle with wireframe set to Dots. Use solid line in one or the other.

Figure 7-40. WireframeType = Wireframe. Figure 7-41. WireframeType = WireframePalettedByY.

Copyright LightningChart Ltd 2009-2023 227

Figure 7-42. WireframeType = SourcePointColored. Figure 7-43. WireframeType = Dots.

Figure 7-44. WireframeType = DotsPalettedByY. Figure 7-45. WireframeType = DotsSourcePointColored.

228 LightningChart® .NET User’s Manual, rev. 10.5

7.10.5.1 Some notes when using wireframe simultaneously with fill

When fill and wireframe are drawn in the same position in 3D model, Z-fighting may appear. It can

be seen as broken wireframe lines. That is because it is impossible for the GPU to determine which

object is closer to camera.

Figure 7-46. Surface grid wireframe with filling. Z-fighting appears as broken wireframe lines.

To prevent Z-fighting from occurring, use WireframeOffset or DrawWireframeThrough property. By

using WireframeOffset, the wireframe is moved slightly in 3D model space. DrawWireframeThrough

draws the wireframe through the filling, whether or not the part of the surface is visible to the

camera.

Figure 7-48. DrawWireframeThrough is enabled. Figure 7-47. WireframeOffset = (X=0; Y=0.1; Z=0).

Copyright LightningChart Ltd 2009-2023 229

 Contour lines

Contour lines allow quick interpretation of height data without filling the surface with paletted fill. Contour

lines can be used combined with fill and wireframe. By setting ContourLineType property, contour lines can

be drawn with different styles:

• None: no contour lines are shown

• FastColorZones: The lines are drawn as thin vertical zones. Allows very powerful rendering, which suits

well for continuously updated or animated surface. Steep height changes are shown as thin line, as gently

sloping height differences are shown with thick line. All lines use the same color defined with

ContourLineStyle.Color property. The zone height can be set by FastContourZoneRange property.

• FastPalettedZones: Like FastColorZones, but line coloring follows ContourPalette options (see chapter

7.10.4).

• ColorLineByY and ColorLineByValue: Contour lines are made with actual lines. Rendering takes longer

than FastColorZones. The line width can be adjusted with ContourLineStyle.Width property. Contour

lines can alos be shifted with WireframeOffset property, to remove possible Z-fighting with filling.

• PalettedLineByY and PalettedLineByValue: Like ColorLineByY and ColorLineByValue, but line coloring

follows ContourPalette options (see chapter 7.10.4).

Figure 7-49. ContourLineType = FastColorZones. Figure 7-50. ContourLineType = FastPalettedZones.

Figure 7-52. ContourLineType = PalettedLine. Figure 7-51. ContourLineType = ColorLine.

230 LightningChart® .NET User’s Manual, rev. 10.5

 Fadeaway

Demo examples: Spectrum 3D

SurfaceGridSeries3D, SurfaceMeshSeries3D and WaterfallSeries3D have a FadeAway property, which

allows fading away the series towards the back of the chart. Fadeaway is measured in percents, valid range

being from 0 (no fadeaway, the default value) to 100 (full fadeaway). The higher the value, the more

transparent the data with high Z value will become.

 Scrolling surface data

Demo examples: Spectrogram

SurfaceGridSeries3D and SurfaceMeshSeries3D have InsertRowBackAndScroll and

InsertColumnBackAndScroll methods for performance optimized periodical data adding. They insert a new

data row or column into the surface series’ data table while dropping the oldest values i.e. the first data row

off. Consider the following 3D spectrum display (Figure 6-54). New FFT values are added as a new row (close

to camera), and the old data and the time axis (Z axis) must be scrolled. The oldest surface values must be

dropped off.

InsertRowBackAndScroll and InsertColumnBackAndScroll take the new data as a double array, but also

require new minimum and maximum values for both surface series and the scrolled axis (Z dimension/axis

for InsertRowBackAndScroll and X dimension/axis for InsertColumnBackAndScroll). This constant adjusting

of series and axis ranges enables the scrolling effect.

Figure 7-53. ContourLineType = PalettedLineByValue.

Copyright LightningChart Ltd 2009-2023 231

Figure 7-54. Presenting 3D spectrum with surface grid. InsertRowBackAndScroll method is used for performance optimized data
adding. Fadeaway property is 100 to make the surface smoothly fade away towards the back of the chart. A perspective camera
is used.

Figure 7-55. A spectrogram with surface grid. InsertColumnBackAndScroll method is used. An orthographic camera above the
model gives straight and perpendicular projection. SuppressLighting is enabled to remove unwanted light reflections. Fadeaway =
0 for making the grid series fully visible.

232 LightningChart® .NET User’s Manual, rev. 10.5

 Handling transparency

While rendering opaque surface is straightforward, things get a bit more complicated with semi-

transparent or transparent surfaces as they should allow seeing other 3D-series and objects as well as

data points behind them. LightningChart offers 3 options for handling transparency of the surface:

Unordered, ShaderApproximation and OrderingTriangles, each with their advantages and

disadvantages. TransparencyRenderMode property can be used to select this.

Unordered - Renders transparent object faces in the order they are created. This is good for all non-

transparent surfaces and identical to the old library behavior. For translucent surfaces it may work

under certain view angles, but could be completely opaque from other angles, or alternatively light

effect on surface may appear incorrect (artifacts may be seen).

ShaderApproximation - Uses shader for transparency effect. This approach is almost as fast as

Unordered, but partial transparency is handled correctly between multiple surfaces or on the same

surface. The drawback is that surface edge is less smooth (more ragged/aliased) compared to

Unordered or OrderingTriangles options. If chart has both surface and PointLineSeries3D object, then

ShaderApproximation mode should be set for both types of object for consistency.

OrderingTriangles - Orders object face triangles in proper z-order. This would be slow on items with

large number of faces (1 million or more). It also doesn’t work with multiple surfaces (viewing angle

should match multiple surface order).

TransparencyRenderMode is available for surface type 3D-series (SurfaceGridSeries3D,

SurfaceMeshSeries3D and WaterfallSeries3D), as well as for PointLineSeries3D. Note that this property

is available only when DirectX 11 renderer is used, in other words when RendererDeviceType is either

HardwareOnlyD11 or SoftwareOnlyD11.

Figure 7-56. Semi-transparent SurfaceMeshSeries3D wrapped as a tube on the left. On the right, Several
SurfaceGridSeries3D with top one having transparent fill using ShaderApproximation.

Copyright LightningChart Ltd 2009-2023 233

Figure 7-57. On the left, two WaterfallSeries3D with the one in front having transparent fill using ShaderApproximation. On
the right, semi-transparent PointLineSeries3D coiled as a spring.

7.11 SurfaceMeshSeries3D

Demo examples: Surface mesh, heat dissipation; Surface mesh; Stepping surface mesh; Globe with flight

routes; Gradient bars

SurfaceMeshSeries3D is almost similar to SurfaceGridSeries3D as they both mostly have the same

properties. The biggest difference is that surface nodes can be positioned freely in 3D space. In other

words, the surface does not have to be rectangular. SurfaceMeshSeries3D allows warping the surface

virtually to any shape, for example to a sphere or a human head.

Figure 7-58. SurfaceMeshSeries3D, geometry made as a pipe.

234 LightningChart® .NET User’s Manual, rev. 10.5

Figure 7-59. Surface mesh nodes. SizeX = 4, SizeZ =4.

 Setting surface mesh data

• Set SizeX and SizeZ properties to give the grid a size as columns and rows.

• Set X, Y and Z values for all nodes:

Method, with Data array index

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)

{

 for (int nodeIndexZ = 0; nodeIndexZ < rowCount; nodeIndexZ ++)

 {

 meshSeries.Data[nodeIndexX, nodeIndexZ].Y = xValue;

 meshSeries.Data[nodeIndexX, nodeIndexZ].Y = yValue;

 meshSeries.Data[nodeIndexX, nodeIndexZ].Z = zValue;

 meshSeries.Data[nodeIndexX, nodeIndexZ].Value = dataValue;

 }

}

 meshSeries.InvalidateData(); // Notify when new values are ready to refresh

Alternative method, usage of SetDataValue

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)

{

 for (int nodeIndexZ = 0; nodeIndexZ < rowCount; nodeIndexZ ++)

 {

 meshSeries.SetDataValue(nodeIndexX, nodeIndexZ,

 xValue,

 yValue,

zValue,

dataValue,

Color.Green); // Source point colors are not used in this

example, so use any color here

 }

}

 meshSeries.InvalidateData(); // Notify when new values are ready to refresh

row0

row1

row2

row3

col0 col1 col2 col3

Copyright LightningChart Ltd 2009-2023 235

7.12 WaterfallSeries3D

Demo examples: Waterfall 3D

With WaterfallSeries3D, the data is visualized in area strips. Areas can be filled, wire-framed and

contour-lined like SurfaceGridSeries3D, see chapter 7.10. In Y-dimension, area starts from BaseLevel

property value. The node data can be set like in SurfaceMeshSeries3D, see chapter 7.11.1.

Figure 7-60. Two waterfall series. On the left violet series, X and Z are in rectangular form. BaseLevel = 10. On the right red-
green-blue series, X and Z values are bent, and each row is placed in different horizontal location.

WaterfallSeries3D is especially handy for presenting traditional 3D spectrum.

Figure 7-61. Waterfall series used for traditional spectrum presentation.

236 LightningChart® .NET User’s Manual, rev. 10.5

7.13 BarSeries3D

Demo examples: Horizontal bars; Bars, grouping; Bars, manhattan

BarSeries3D allows bar data visualization in 3D.

 Bars grouping

Bar series can be grouped with many options available in BarViewOptions property of View3D.

BarViewOptions.ViewGrouping controls how the bars are grouped in the 3D view.

Figure 7-62. BarViewOptions.ViewGrouping = GroupedIndexedFitWidth. Bars are grouped according to their index. Bar
widths and group gaps are arranged to fit the width nicely.

Figure 7-63. BarViewOptions.ViewGrouping = GroupedIndexed. Original bar widths apply, and groups are arranged to fit
the chart width.

Copyright LightningChart Ltd 2009-2023 237

 Figure 7-64. BarViewOptions.ViewGrouping = GroupedByXValue. Bar X values apply.

 Figure 7-65. BarViewOptions.ViewGrouping = StackedIndexed. All bars having same index are stacked.

 Figure 7-66. BarViewOptions.ViewGrouping = StackedByXValue. All bars having same X value are stacked. This example
 looks same than with StackedIndexed, as the X values and indices are same.

238 LightningChart® .NET User’s Manual, rev. 10.5

Figure 7-67. BarViewOptions.ViewGrouping = StackedStretchedToSum. All bars having same X value are stacked and
stretched to StackSum, in this case 25.

Figure 7-68. BarViewOptions.ViewGrouping = Manhattan. The first series values are shown nearest to the camera and
the last series farthest. Bar X values control the bar position in X dimension.

Copyright LightningChart Ltd 2009-2023 239

 Bar styles

BarSeries3D has Shape property for controlling the bar shape. In addition, with some shapes,

CornerPercentage can be used to change corner rounding and DetailLevel to change the visual

quality.

Figure 7-69. Bar shapes: Simple, Cylinder and RoundedCylinder.

Figure 7-70. Bar shapes: Cone, ReversedCone and Pyramid.

240 LightningChart® .NET User’s Manual, rev. 10.5

Figure 7-71. Bar shapes: ReversedPyramid, Ellipsoid and Beveled.

 Setting bar series data

Bar series data can be added as BarSeriesValue3D -structures, which contains x, y, z and text fields.

// create new values array

BarSeriesValue3D[] values = new BarSeriesValue3D[3];

values[0] = new BarSeriesValue3D(20, 45, 5, “”);

values[1] = new BarSeriesValue3D(30, 50, 5, “”);

values[2] = new BarSeriesValue3D(40, 35, 5, “”);

// add values to series

chart.View3D.BarSeries3D[0].AddValues(values, false);

Copyright LightningChart Ltd 2009-2023 241

 Showing bars horizontally

Bars are drawn in Y axis direction. To show the bars vertically, rotate the camera 90 degrees.

The code setting up the vertical bars view of the previous figure:

chart.BeginUpdate();

chart.View3D.Dimensions.Y = 100;

chart.View3D.Dimensions.X = 150;

chart.View3D.YAxisPrimary3D.Location = AxisYLocation3D.FrontLeft;

chart.View3D.Camera.RotationX = 0;

chart.View3D.Camera.RotationY = 0;

chart.View3D.Camera.RotationZ = 0;

chart.View3D.Camera.ViewDistance = 170;

chart.EndUpdate();

The code setting up the horizontal bars view of the previous figure:

chart.BeginUpdate();

chart.View3D.Dimensions.Y = 150;

chart.View3D.Dimensions.X = 100;

chart.View3D.YAxisPrimary3D.Location = AxisYLocation3D.FrontRight;

chart.View3D.Camera.RotationX = 0;

chart.View3D.Camera.RotationY = 0;

chart.View3D.Camera.RotationZ = 90;

chart.View3D.Camera.ViewDistance = 170;

chart.EndUpdate();

Figure 7-72. Vertical bars view on the left, horizontal bars view on the right.

242 LightningChart® .NET User’s Manual, rev. 10.5

7.14 MeshModels

Demo examples: Vessels with sea depth; Mesh models coloring, wireframe; Mesh models realtime

coloring; Mesh models by code

MeshModels list property allows inserting 3D models from external 3D model editors into LightningChart

View3D. The models can be imported in OBJ format, which is a generic format in 3D modeling

applications and game engines.

Note! LightningChart v.7 onwards does not support Direct3D X-format files (*.x) anymore, since

DirectX 11 does not support it.

 Figure 7-73. Battleship and submarine models loaded in View3D, over SurfaceGridSeries3D visualizing seabed depth data.

Copyright LightningChart Ltd 2009-2023 243

 Loading a model

• To load a model from file, set the path and file name into ModelFileName property, or use

LoadFromFile method. When loading the model from file, texture fills are loaded as well, if they

exist in the same path, and MTL file and image files are accessible.

• Starting from LightningChart version 8.5, MeshModel creation supports colors for vertices in

.obj -file. Vertex positions support Red, Green, Blue and Alpha values after x, y and z (XYZRGBA).

• To load model from stream, use LoadFromStream method. The stream reading method only

reads geometry and materials, but not textures.

• To load model from a resource, use LoadFromResource method.

 Positioning, scaling and rotating the model

A MeshModel object Position follows the X, Y and Z axes it has been assigned to. The model can be

rotated by editing Rotation property. Size can be defined with Size property, which is a collection of

factors for original model size and does not follow axis ranges or 3D world dimensions.

 Enabling fill and wireframe

• To show fill, set Fill = True

• To show wireframe, set WireFrame = True, and set preferred line color in WireFrameLineColor.

 Figure 7-74. Airplane shown as wireframe (WireFrameLineColor = Red) and with default gray fill.

244 LightningChart® .NET User’s Manual, rev. 10.5

 Custom-coloring fill

By default, the model renders with the colors of the OBJ model. To apply custom coloring for

model’s vertices, use UpdateFillColors(int[] colors) method. This method can also be called

periodically, to apply real-time color updates. UpdateFillColors requires an ARGB colors array that

is equal length of vertex positions (X.Length). One color for each vertex.

GeometryConstructed event reports position of vertices in axis values space, as X, Y and Z arrays.

They are especially needed when applying coloring e.g. by spatial distance of other chart objects,

such as data points. Subscribe to GeometryConstructed event handler in the initialization phase,

and then unsubscribe when not needed anymore.

Figure 7-75. MeshModel colored by spatial distance utilizing UpdateFillColors method.

Note: ChartTools.ConvertDataToColorsByFixedIntervalPalette method can be utilized to convert

data values into colors (ARGB int) by given palette steps.

Copyright LightningChart Ltd 2009-2023 245

 Custom-coloring wireframe

Wireframe can also be colored with custom colors. Use GeometryConstructed event handler to get the

required colors array length and UpdateWireframeColors method to apply the new colors.

Figure 7-76. MeshModel wireframe colored by spatial distance utilizing UpdateWireframeColors method.

 Reverse vertices winding order

Some models are made with reverse winding order and therefore culling makes them invisible. If the

model does not show up correctly, change Cull setting between Clockwise, CounterClockwise and None.

meshModel.Cull = Cull.CounterClockwise;

 Shade mode

It is possible to control whether lights affect MeshModel colors or not. By setting ShadeMode property

to Flat, lighting has no effect on the model. By default, ShadeMode is set to Gouraud (lighting affects

the model).

model.ShadeMode = ShadeMode.Flat;

Note that disabling lighting effects causes the model to lose some of its depth perception.

246 LightningChart® .NET User’s Manual, rev. 10.5

 MeshModel rendering order

RenderingOrder -property was introduced in LightningChart version 8.5. It controls whether a

MeshModel is rendered before other series, such as PointLineSeries3D and SurfaceGridSeries3D

(BeforeSeries), or after them (AfterSeries). MeshModels with similar RenderingOrder -settings are

drawn in the order they are added to the chart.

meshModel.RenderingOrder = MeshModelRenderingOrder.BeforeSeries;

RenderingOrder affects above all semi-transparent MeshModels. Its use is to determine if other series

can be seen through the model. If a MeshModel uses no transparent colors, it blocks everything behind

it from being seen regardless of RenderingOrder -settings.

Note that currently Rectangles3D and Polygons3D are not affected by RenderingOrder as they are not

considered series.

 Constructing MeshModel programmatically from vertices

Starting from v.8.2, MeshModel supports constructing the MeshModel geometry programmatically. It

allows visualizing objects and shapes that have been produced via computation.

The following Create methods are available:

• Create(positions, colors, indices)

• Create(positions, colors, normals, indices)

• Create(positions, textureCoordinates, bitmap, textureWrapMode, indices)

• Create(positions, normals, textureCoordinates, bitmap, textureWrapMode, indices)

Figure 7-77. RenderingOrder of a semi-tranparent MeshModel is set to BeforeSeries on the left and to AfterSeries on the right.
With BeforeSeries -option, other series such as PointLineSeries3D cannot be seen through the model even if the model colors are
transparent.

Copyright LightningChart Ltd 2009-2023 247

Index array (indices) parameters are optional. If provided, they will define which vertices, colors, light

normals and texture coordinates to use from the arrays given. Using indices saves resources when

same vertices are shared between multiple triangles.

Figure 7-78. MeshModels constructed by code.

The rotation, scaling and positioning properties etc., as well as events, apply also to a MeshModel

created programmatically from vertices, in a similar way than they work for loaded objects.

An alternative way to create MeshModels is to use CreateFromTriangles() method. It creates the

model based on the given arrays of vertices (PointFloat3D[]) and colors (Color[] or int[]), and an

optional array of normal (PointFloat3D[]).

7.14.9.1 Updating the bitmap fill efficiently

When a MeshModel has been created by using Create method, supplying bitmap and texture

coordinates as arguments, it is possible to update the bitmap very efficiently without reconstructing

the geometry. Call UpdateFillBitmap method to update.

Note! UpdateFillBitmap method is not applicable for models loaded from OBJ files.

248 LightningChart® .NET User’s Manual, rev. 10.5

 Tracing the model with mouse

MeshModel has triangle-based tracing for mouse position. Use TriangleTraced event, which indicates

the nearest triangle to the camera and the mouse location.

The event arguments have the following info:

• IntersectionPointAxisValues: intersection point of triangle face in axes values

• ModelSpaceTriangleCoordinates: array of 3 triangle corners (vertices) the mouse is hitting in 3D

model space coordinates

• WorldSpaceTriangleCoordinates: array of 3 triangle corners (vertices) the mouse is hitting in 3D

world space coordinates.

• NearestCoordinateIndex: Index of nearest coordinate index of traced triangle, value of 0…2. Use

the index to extract the coordinate from ModelSpaceTriangleCoordinates or

WorldSpaceTriangleCoordinates array.

Figure 7-79. Tracing MeshModels with mouse. Traced result is shown in an Annotation.

Copyright LightningChart Ltd 2009-2023 249

7.15 VolumeModels

Demo examples: Volume head; Volume flow; Volume geo; Volume skeleton; Volume wave interference

VolumeModels is a tool for volume data visualisation via Direct Volume Rendering. VolumeModel takes

the volume data inside and visualizes it. LightningChart’s volume rendering engine is based on the

Volume Ray Casting.

An image is produced by the algorithm via the volume data sampling along the tracks of the rays which

travel inside the dataset. A simple realization of hardware acceleration for Volume Ray Casting requires

generating boundaries for a volume object. Usually, they are represented by a cube. High rendering

quality without artefacts, and usage of the interchangeable ray function are the main advantages of

this technology.

RayFunction is the core of the algorithm providing it with a very high level of flexibility. The technique

is powerful because it specifies the way how the data is sampled and combined. This makes it a very

useful tool for a feature extraction.

Note! VolumeModels are available only when DirectX 11 renderer is used.

 Loading data

There are several ways how the data can be imported to the VolumeModel:

• Data can be supplied to Data property as a collection of images which represent slices of the

dataset

• Data can be supplied directly to the constructor of the VolumeModel in various ways

• Data can be supplied to the VolumeModel via one of the load functions

Load functions and constructors allow supplying data as a collection of slices (similarly to Data

property) or as a string with a path to the folder with the slices (as .Net supported image extension).

The data can also be provided as a texture map created by our tool. A texture map consists of slices,

but its supplement also needs an additional information about the number of slices on the picture. This

is required for efficient usage of GPU input buffers. Texture maps can be created via

ChartTools.CreateMap function. Direct input of texture map is used to speed up the start of an

application for a very big dataset.

 Properties

VolumeModel contains typical properties of a 3D object in LightningChart, for example Visible,

Rotation, Size, Position, AllowUserInteraction, and HighLight. In addition, the object has specific

properties, which define how Volume Rendering engine handles it.

250 LightningChart® .NET User’s Manual, rev. 10.5

Figure 7-80. Property tree of VolumeModels

Copyright LightningChart Ltd 2009-2023 251

 Ray Function

RayFunction property allows choosing one of the three ways of voxel sampling and composition

available in LightningChart Volume Rendering Engine:

• RayFunction.Accumulation collects and combines as much data as possible. The visualization
which is produced by this technique looks like a semi-transparent gel. The figure below shows
an example of RayFunction.Accumulation application visualizing a medical dataset.

Figure 7-81. Example of a medical application for the RayFunction.Accumulation

252 LightningChart® .NET User’s Manual, rev. 10.5

• RayFunction.MaximalIntensity takes into account only the brightest values sampled by the ray.
Visually it provides a very similar result to X-ray images. It allows to get an additional
information about the internal structure of the object. RayFunction.MaximalIntensity
applications for skeleton visualization and ultrasound wave’s interference simulation are shown
below.

 Figure 7-82. Examples of a Maximum Intensity Ray Function application

• RayFunction.Isosurface draws the model surface in a way that it looks like a polygonal model
rendering. The result is very similar to those produced by Indirect Volume Rendering. Figures
show examples of RayFunction.Isosurface applications for the visualization of human skull CT
and simulation of water flow.

 Figure 7-83. Examples of an Isosurface Ray Function application

Copyright LightningChart Ltd 2009-2023 253

 Threshold

The Volume Rendering Engine can apply a threshold range by a property to the VolumeModel.

There is a separate boundary for every colour channel. The voxel is visualized only if the

corresponding color values are lower than the high boundary, and higher than the low boundary at

all the channels. Acceptable areas are invisible. This property is not taken into consideration by the

mouse hit test.

Figure 7-84. Example of two different threshold settings

254 LightningChart® .NET User’s Manual, rev. 10.5

 Color clipping

Demo examples: Coloring Volume Model

Volume models have ClipColorRange and ColorRangeToClip properties, which like Threshold, can be

used to clip certain colors from the model. However, they work the opposite way. Color clipping

doesn’t render colors within the defined color ranges, whereas Threshold removes colors outside

the range.

ClipColorRange controls whether color clipping is enabled or not. ColorRangeToClip allows setting

the actual color ranges that should be removed. Minimum and maximum clip values can be set via

Min and Max properties for each color channel separately. Alternatively, all values can be modified

simultaneously by giving assigning RangeRGB object to ColorRangeToClip. The clipped values should

be between 0 and 1 where 0 means color value 0 and 1 value 255. After the ranges have been set,

each color combination that is within the defined ranges will be clipped. Clipping takes all color

channels into account simultaneously.

// Enabling color clipping.

_chart.View3D.VolumeModels[0].ClipColorRange = true;

// Modifying a single channel value.

_chart.View3D.VolumeModels[0].ColorRangeToClip.Min.R = 0.1;

// Assigning all clip ranges simultaneously.

_chart.View3D.VolumeModels[0].ColorRangeToClip =

new RangeRGB(new PointRGB(0, 0, 0), new PointRGB(0.2, 0.2, 0.2));

Figure 7-85. Original Volume Model on the left. On the right, color clipping is used to remove the blue channel.

Copyright LightningChart Ltd 2009-2023 255

 Slice Range

SliceRange property allows cutting away a part of the VolumeModel. It is a very useful tool for the

exploration of the object’s internal structure. SliceRange contains two boundaries, Min and Max,

both of which are represented by three pointing float values.

Figure 7-86. Example of Accumulation Ray Function and SliceRange modification

256 LightningChart® .NET User’s Manual, rev. 10.5

 Sampling Rate Options

SamplingRate is a very important property to the final image quality. It defines how often the

volume dataset is sampled along the ray’s track. Higher SamplingRate produces better quality but

requires more powerful hardware. SamplingRate influences RayFunction options, especially

Accumulation. Artefacts produced by low sampling rate are less noticeable when using Maximal

Intensity. Furthermore, Isosurface can be too sharp at a very high sampling rate. Usually, the sweet

spot equals the number of voxels on the side which is placed along the ray tracks.

SamplingRateOptions contains several options for SamplingRateManager. SamplingRateManager

is needed to reach the optimal balance between quality and frame rate for a hardware. By default,

SamplingRateManager is turned on by the property Enabled being set true. If set false,

ManualSamplingRate value will be used. SamplingRateRange defines the boundaries for

SamplingRateManager. Inertness specifies how rapid is the reaction of sampling rate in case of

performance changes. TargetFPS is a target value, which sampling rate manager tries to achieve.

Figure 7-87. Example of low sampling rate: 32(left), 64(right)

Copyright LightningChart Ltd 2009-2023 257

 Smoothness

Smoothness property prevents too high detalization of the surface. It smoothens the surface of the

model and reduces some noise and other artefacts.

Figure 7-88. Example of too high sampling rate, fixed by smoothness property

258 LightningChart® .NET User’s Manual, rev. 10.5

 EmptySpaceSkipping

EmptySpaceSkipping property defines a resolution of empty space, skipping sampling. A low value

(16-32) of EmptySpaceSkipping improves the performance but can cause artefacts in the model

edges.

Figure 7-89. Example of too low EmptySpaceSkipping property value

Copyright LightningChart Ltd 2009-2023 259

 Opacity

Opacity specifies the behaviour of Accumulation option of RayFunction. The lower the Opacity, the

more transparent the object will be.

 Figure 7-90. Example of Accumulation Ray Function Opacity modification: 15% (left), 45(right)

 Brightness and Darkness

These properties define the image’s transfer function. Every change has its own transfer function. It is

represented by the linear function: 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐵𝑟𝑖𝑔𝑡ℎ𝑛𝑒𝑠𝑠 ∗ 𝑖𝑛𝑝𝑢𝑡 − 𝐷𝑎𝑟𝑘𝑛𝑒𝑠𝑠

260 LightningChart® .NET User’s Manual, rev. 10.5

7.16 Rectangle3D objects

Demo examples: Rectangles/Planes; Surface mouse control; Parallel coordinates chart

Rectangle3D allows presenting a rectangle, turned to any angle, at any size, at any location. They can

be added to View3D.Rectangles list. Rectangles can also act as planes by defining their size according

to View3D.Dimensions.

Set Size in 3D world dimensions (not X, Y or Z axis values) as Width and Height. Set the center point via

Center property, defined in X, Y and Z axis values. Rotation property specifies the rotation in degrees.

Fill settings can be modified via Fill property. Solid color and bitmap fills are available. To use bitmap

fill, set the bitmap in Image, and enable UseImage. When setting Fill.Layout = Stretch, the bitmap

stretches to fill the rectangle. By setting Fill.Layout = Tile, the same bitmap is tiled to fill the rectangle.

With Fit option the bitmap fills the designated area while maintaining the original aspect ratio. The tile

count can be altered via Fill.TileCountWidth and Fill.TileCountHeight properties.

Figure 7-91. Properties of Rectangle3D objects.

Copyright LightningChart Ltd 2009-2023 261

Figure 7-92. Two Rectangle3D objects in View3D. The bottom blue one shows a bitmap fill with Layout = Tile. The red rotated
rectangle on the top is configured with translucent color.

7.17 Polygon3D objects

Demo examples: 3D polygons; World population

Polygon3D objects allow presenting a 2D polygon stretched to given Y range. They can be added to

View3D.Polygons list.

Define the polygon path in X and Z axis values and store it in Points array. Set the Y range with YMin

and YMax values.

Material.Diffuse controls the main color of the rectangle. Rotate the polygon to another angle with

Rotation.X, Rotation.Y and Rotation.Z in degrees.

262 LightningChart® .NET User’s Manual, rev. 10.5

Figure 7-93. Properties of Polygon3D objects.

Figure 7-94. A 6-point polygon ranging from YMin = 0, YMax = 15.

Copyright LightningChart Ltd 2009-2023 263

Figure 7-95. World population shown with Polygon3D objects. A Polygon3D object is drawn based on each region of map
data. The amount of population of a country is used to color the polygon and to set its YMax. China and India are shown with
translucent colors because of their high population.

7.18 Data cursor

Starting from version 10.5, View3D has a built-in data cursor, which automatically tracks the closest series

value to the mouse cursor and shows it in a result table. The cursor consists of hair cross lines for all three

axes, a tracking point at the location of the closest data value, indicators showing the current values on

axis scales, and the result table, which besides the axis values also shows the series name and its color.

Data cursor can be enabled or disabled via Visible property. It is also possible to hide some of the cursor

components such as the lines or the indicators labels for the axes individually by setting

ShowHaircrossLines or ShowLabels, or other respective “Show” properties based on what should be

hidden, false. The appearance of the cursor can also be modified via component specific properties.

IndicatorLength and IndicatorWidth modify the axis indicators, TrackingPointStyle allows altering the

tracking point while LineStyle changes the hair cross lines. Results property contains all the options to

modify the result table.

// Enables data cursor but hides its axis indicator labels.

_chart.View3D.DataCursor.Visible = true;

_chart.View3D.DataCursor.ShowLabels = false;

264 LightningChart® .NET User’s Manual, rev. 10.5

// Modifying the result table.

_chart.View3D.DataCursor.ShowResultTable = true;

_chart.View3D.DataCursor.Results.Background.Color = Colors.DarkBlue;

Data cursor changes its behaviour depending on whether the tracked series has a visible line or just

visible data points (scatter plot). If the line is visible, the cursor finds the nearest series and its value to

the cursor’s current position. If there are no lines visible, the cursor tracks the nearest data point in any

direction. Enabling SnapToNearestDataPoint overrides this making the cursor always finding the

nearest actual data point value in any direction.

Data cursor works with every View3D series and object except for Rectangle3D and VolumeModels.

Figure 7-96. The property tree of the data cursor.

Copyright LightningChart Ltd 2009-2023 265

Figure 7-97. Data cursor with PointLineSeries3D and SurfaceMesh3D series.

7.19 Zooming, panning and rotating

ZoomPanOptions properties can be used to control the zooming, panning and rotation settings.

Figure 7-98. ZoomPanOptions properties and sub-properties, with DevicePrimaryButton / DeviceTertiaryButtonAction /
DeviceSecondaryButtonAction options on the right.

266 LightningChart® .NET User’s Manual, rev. 10.5

Depending on the settings, zooming can be performed with mouse wheel, by touch screen

pinching/spreading, or by painting a box on selected 3D plane. Panning, box zooming, and rotating can

all be performed by left, middle or right mouse button, as they are configurable. Panning can be made

for the whole 3D chart, or so that primary axes are adjusted while keeping the 3D scene location the

same.

 Mouse wheel zooming

Scroll mouse wheel up to zoom in, and down to zoom out. Use WheelZoomFactor to adjust the amount

of applied zoom with every mouse wheel event. To disable mouse wheel zooming, set AllowWheelZoom

to false. By default, this is set true.

 Box zooming

To enable box zooming, assign the box zooming to a mouse button action property. For example,

DevicePrimaryButtonAction = ZoomXZ causes the box zoom to apply to XZ plane. Y dimension is not

affected. Set ZoomXZ or ZoomYZ respectively for zooming other planes.

Figure 7-99. On the left, XZ-plane box zooming in progress. On the right, the outcome of the zooming. X and Z axis ranges
are modified while Y axis range stays the same.

Zoom in by dragging box from left to right. The zoomed ranges are applied to axes related to the selected

plane. To zoom only specific dimension, X, Y or Z, select ZoomX, ZoomY or ZoomZ.

Zoom out by dragging box from the right to left. Zooming out is applied by factor set in

BoxZoomOutFactor. Zooming out shows a cross in the front of the box. It can be disabled by setting

BoxZoomingOutCrossVisible = False.

Copyright LightningChart Ltd 2009-2023 267

 ZoomPadding

ZoomPadding property defines the amount of empty space left between the 3D model and the margins

after a zooming operation. ZoomPadding has no effect when moving the chart or zooming manually, for

example by mouse scrolling. Furthermore, ZoomPadding does not apply to rectangle-based zooming.

Setting ZoomPadding in WinForms:

chart.View3D.ZoomPanOptions.ZoomPadding = new Padding(10, 30, 10, 10);

Setting ZoomPadding in Wpf:

chart.View3D.ZoomPanOptions.ZoomPadding = new Thickness(10, 30, 10, 10);

Figure 7-100. ZoomPadding leaves empty space between data/labels and the margins if for example ZoomToDataAndLabels
operation is used as in this case.

268 LightningChart® .NET User’s Manual, rev. 10.5

 ZoomToDataAndLabels

In View3D, ZoomToDataAndLabels operation causes the available area, limited by margins and

ZoomPadding, to be used as optimally as possible by moving the camera closer/farther. Axes, labels,

series data and markers are all kept visible. Chart title, annotations and legend boxes are ignored as their

position is defined in screen coordinates. ZoomToDataAndLabels maintains the viewing angle while the

contents of the view are centered.

By default, LeftDoubleClickAction property is set as ZoomToDataAndLabels, meaning double-clicking the

mouse left button activates the operation. Disable this by changing the property to Off. In code,

ZoomToDataAndLabels can be invoked by View3D.ZoomToFit(ZoomArea3D.DataAndLabelsArea)

method.

Figure 7-101. ZoomToDataAndLabels operation has been activated. Data series, axes, walls etc. have been optimally fitted
within the margins. Orientation arrows follow the bottom-left corner of the graph area but legend boxes are ignored.
ZoomPadding = 0 for all edges, thus no empty space is left between the margins and the DataAndLabelsArea.

Note that ZoomToDataAndLabels takes MinimumViewDistance property of the camera to account,

meaning that in some cases the full available graph area might not be used as the camera can’t get close

enough to the chart. A ChartMessage notification is sent in this case.

Copyright LightningChart Ltd 2009-2023 269

 Rotating and panning

Camera can be rotated around the 3D model by pressing the assigned mouse button down and by

dragging horizontally or vertically. RotationX, RotationY and RotationZ properties are updated.

When a mouse button action is set to Pan, panning updates Target property of Camera. When mouse

button action is set to PanPrimaryXZ, PanPrimaryXY or PanPrimaryYZ, the primary X, Y and Z axes ranges

are adjusted. For example, PanPrimaryXZ adjusts X and Z axes when dragging with mouse. Secondary X,

Y and Z axes are not altered.

Set DevicePrimaryButtonAction / DeviceTertiaryButtonAction / DeviceSecondaryButtonAction to

Pan/PanPrimaryXZ/PanPrimaryXY/PanPrimaryZ to enable panning. Set it to Rotate to enable rotating.

To disable panning and rotating from left mouse button, set it to None.

Use PanSensitivity to control the amount of applied panning. Respectively, use RotationSensitivity to

control the amount of applied rotation.

 Zooming with touch screen

Set two fingers on the chart, and pinch them closer to zoom out, or away to zoom in. To disable

zooming with touch screen, set MultiTouchZoomEnabled to False.

 Panning with touch screen

Set two fingers on the chart and move them to the same direction to apply panning. To disable

panning with touch screen, set MultiTouchPanEnabled to False.

 Using mouse wheel over an axis

When mouse wheel is scrolled over an axis, the chart makes axis-specific zooming or panning.

WheelAreaThickness adjusts how wide the mouse wheel sensitive area is near the axis.

AxisWheelAction can be used to select between zooming and panning.

 Zooming, rotating and panning by code

3D view is rotated by moving the View3D.Camera with RotationX, RotationY and RotationZ properties.

With Perspective and Orthographic camera, zoom can be done by setting ViewDistance. With

OrthographicLegacy camera, the Dimensions are changed to achieve zooming. Panning is done by

setting camera Target as 3D model coordinates.

270 LightningChart® .NET User’s Manual, rev. 10.5

7.20 Legend boxes

Legend boxes in View3D are largely similar to ViewXY’s legend boxes (see chapter 6.27). However, only

one legend box is allowed per graph. Also, segment-based properties do not exist since axes in View3D

cannot be divided into segments. Modify the legend box properties via View3D.LegendBox.

Figure 7-102. Legend box properties in View3D

 Hiding surface series palette scales

View3D has SurfaceScales property instead of ViewXY’s IntensityScales. To hide the palette scale in a

legend box, set SurfaceScales.Visible = False. To resize it, set ScaleSizeDim1 and ScaleSizeDim2

properties.

Copyright LightningChart Ltd 2009-2023 271

 Positioning legend boxes in View3D

As in ViewXY, View3D’s legend boxes can be placed automatically or manually. Automatic placement

allows them to be aligned to the left/top/right/bottom side of the view, or the graph area. Control the

position with Position property. Some positioning options take margins into account while some do not.

Options ignoring margins (placing the legend box in the margin area):

TopCenter, TopLeft, TopRight, LeftCenter, RightCenter, BottomLeft, BottomCenter, BottomRight,

Manual

Options placing the legend box inside the margin area:

GraphTopCenter, GraphTopLeft, GraphTopRight, GraphLeftCenter, GraphRightCenter,

GraphBottomLeft, GraphBottomCenter, GraphBottomRight

Offset property shifts the position by given amount from the position determined by Position property.

 // Setting legend box position, offset shifts from RightCenter position

 chart.View3D.LegendBox.Position = LegendBoxPosition.RightCenter;

 chart.View3D.LegendBox.Offset = new PointIntXY(-15, -70);

Manual positioning calculates the offset from the top-left corner of the legend box to the view’s top-left

corner. Note that this differs from TopLeft option, which is calculated from the top of the graph area.

Figure 7-103. Positioning options for legend box. Graph.. options place the legend box inside the margins.

272 LightningChart® .NET User’s Manual, rev. 10.5

7.21 Clipping objects within axis ranges

Demo examples: Simple 3D surface grid

By setting ClipContents property to True, series, rectangles and mesh models are clipped inside axis value

ranges. The axes are always stretched for a dimension, so when clipping is enabled, it prevents rendering

outside the walls.

Figure 7-104. On the left, ClipContents is not used. Series render outside axis ranges. On the right, ClipContents is enabled.

Note that clipping does not modify the series data set itself. Clipping occurs only in rendering stage. Also,

mouse hit test will take effect also outside the walls for invisible, clipped objects.

When clipping is enabled, all lines in the chart are automatically set to line width of 1.

Copyright LightningChart Ltd 2009-2023 273

7.22 Annotation3D

Demo examples: Points tracking; Surface mouse control; Mesh models coloring, wireframe

Annotation3D collection allows adding annotations into the 3D scene. In general, they are similar to

ViewXY’s Annotations (see chapter 6.26), with the exception of Target and Location properties using X,

Y and Z dimensions.

Figure 7-105. Annotation3D object displaying the value of a 3D series. Crosshair cursor can be used to aid the target
movement.

Target can be moved by mouse in 3D. For aiding the movement, annotation shows cross-hair lines when

mouse is over the Target node. Set ShowTargetCrosshair property to Auto/On/Off and adjust the line

style in TargetCrosshairLineStyle.

274 LightningChart® .NET User’s Manual, rev. 10.5

8. Coordinate system converters

The following coordinate system converters are available in CoordinateConverters namespace, which

complements View3D usage.

• Cartesian 3D <-> Spherical 3D

• Cartesian 3D <-> Cylindrical 3D

8.1 SphericalCartesian3D

Demo examples: Spherical coordinates

SphericalCartesian3D converter class converts between spherical and 3D cartesian coordinates.

Figure 8-1. Example created with SphericalCartesian3D converter. Data points of SurfaceMeshSeries3D and the grid are
defined in spherical coordinates. Annotation tracks the nearest data point and displays its value in spherical coordinates.

Spherical data points are defined by SphericalPoint objects which contain the following fields:

• Distance: Distance from origin (0,0,0)

• ElevationAngle: Elevation angle. Also called as Elevation or Altitude, measured from XZ plane.

ElevationAngle is 90 degrees - Inclination angle.

Copyright LightningChart Ltd 2009-2023 275

• HeadingAngle: Heading angle. Also called as azimuth and absolute bearing

For elevation, the XZ plane is the reference plane. (e.g. equatorial plane). Elevation is an angle

measured from that plane.

Note! This converter class expects the View3D.Dimensions to be equal (cubic), otherwise the

conversion result may have to be scaled by user-side code.

View3D’s series typically take the data input as X, Y, Z values. These values can be found e.g. in

SeriesPoint3D, SurfacePoint3D and PointDouble3D objects.

 Converting from spherical to cartesian

To convert a SphericalPoint to cartesian coordinate, use SphericalCartesian3D.ToCartesian() method.

It accepts data input as

• SphericalPoint point

• SphericalPoint[] array

• SphericalPoint[,] matrix

Alternatively, convert by using ToCartesian() extension method for spherical points.

// Create spherical points matrix

SphericalPoint[,] sphericalData = CreateSurfaceData();

// Convert matrix to cartesian matrix

SurfacePoint[,] xyzData = sphericalData.ToCartesian();

Converting matrix to cartesian in Bindable WPF chart:

SurfacePointMatrix xyzData = sphericalData.ToCartesian();

 Converting from cartesian to spherical

To convert a cartesian point to spherical point, use SphericalCartesian3D.ToSpherical() method. It

accepts data input as PointDouble3D point with X, Y and Z fields.

Alternatively, convert a point by using ToSpherical() extension method.

// Define cartesian point

PointDouble3D point = new PointDouble3D(50, 20, 40);

// Convert to spherical point

SphericalPoint sp = point.ToSpherical();

276 LightningChart® .NET User’s Manual, rev. 10.5

8.2 CylindricalCartesian3D

Demo examples: Cylindrical coordinates

Converter class to convert between cylindrical and 3D cartesian coordinates.

Figure 8-2. Example created with CylindricalCartesian3D converter. Data points of SurfaceMeshSeries3D and the grid are
defined in cylindrical coordinates. Annotation tracks the nearest data point of a PointLineSeries3d and displays its value in
cylindrical coordinates.

Cylindrical points are defined by CylindicalPoint objects, which contain the following fields:

• Distance: Distance along XZ plane

• Y: Y value

• Angle: Heading angle, also called as azimuth and absolute bearing

Note! This converter class expects View3D.Dimensions.X and View3D.Dimensions.Z to be equal,

otherwise the conversion result regarding Angle and Distance (or X and Z) may have to be scaled by

user-side code.

View3D’s series typically take the data input as X, Y, Z values. These values can be found e.g. in

SeriesPoint3D, SurfacePoint3D and PointDouble3D objects.

Copyright LightningChart Ltd 2009-2023 277

 Converting from cylindrical to cartesian

To convert a CylindricalPoint to cartesian coordinate, use CylindricalCartesian3D.ToCartesian()

method. It accepts data input as

• CylindricalPoint point

• CylindricalPoint[] array

• CylindricalPoint[,] matrix

Alternatively, convert by using ToCartesian() extension method for cylindrical points.

// Create spherical points matrix

CylindricalPoint[,] cylindricalData = CreateData();

// Convert matrix to cartesian matrix

SurfacePoint[,] xyzData = cylindricalData.ToCartesian();

Converting matrix to cartesian in Bindable WPF chart:

SurfacePointMatrix xyzData = cylindricalData.ToCartesian();

 Converting from cartesian to cylindrical

To convert a cartesian point to cylindrical point, use CylindricalCartesian3D.ToCylindrical() method. It

accepts data input as PointDouble3D point with X, Y and Z fields.

Alternatively, a point can be converted by using ToCylindrical() extension method.

// Define cartesian point

PointDouble3D point = new PointDouble3D(50, 20, 40);

// Convert to spherical point

CylindricalPoint sp = point.ToCylindrical();

278 LightningChart® .NET User’s Manual, rev. 10.5

9. ViewPie3D

Demo examples: Pie 2D; Pie 3D; Donut 3D

ViewPie3D presents data as pie and donut charts, in 3D.

 Figure 9-1. ViewPie3D object tree.

Figure 9-2. Example of a 3D Pie chart and a Donut chart.

Copyright LightningChart Ltd 2009-2023 279

9.1 Properties

Select the chart type, Pie or Donut, by using Style property. Control the zooming, panning and rotation

with ZoomPanOptions property tree, similarly to View3D (see chapter 7.19).

Camera property controls the viewpoint (see chapter 7.4). Predefined lighting setup can be selected with

LightingScheme property. Use Material property and its sub-properties to adjust general 3D surface

appearance and shininess.

Use DonutInnerPercents to set the donut inner radius, Rounding to adjust edge rounding radius,

StartAngle to rotate the pie, and Thickness to adjust pie thickness. ExplodePercents adjusts how far away

the exploded pie slice is, when slice’s Explode is set true.

TitlesStyle sets the pie slice text of one of the following: Titles, Values or Percents. Edit

TitlesNumberFormat for example to “0.0 TWh” to include units in the end.

Annotations can be used as in View3D, but without axis value binding properties (see chapter 7.22).

9.2 Pie slices

Pie chart data is stored in Values collection. Each item in the list is of type PieSlice. Edit the data value

in Value property. Set title string into Title.Text property. By defining TitleAlignment = Outside, the title

is drawn outside the pie.

Figure 9-3. The Values list editor of a Pie chart.

280 LightningChart® .NET User’s Manual, rev. 10.5

9.3 Setting data by code

Data is stored in the Values list as PieSlices.

//Add pie slice data

//By using true as last parameter, the slice is automatically added to

chart.ViewPie3D.Values collection

PieSlice slice1 = new PieSlice("Hydroelectric",

Color.FromArgb(150, Color.Aqua), 1.0, chart.ViewPie3D, true);

PieSlice slice2 = new PieSlice("Gas",

Color.FromArgb(150, 0, 0, 0), 2.1, chart.ViewPie3D, true);

PieSlice slice3 = new PieSlice("Nuclear", Color.Lime, 1.3, chart.ViewPie3D,

true);

PieSlice slice4 = new PieSlice("Oil & coal", Color.FromArgb(240,0,0,0), 3.2,

chart.ViewPie3D, true);

PieSlice slice5 = new PieSlice("Others", Color.Yellow, 0.66,

chart.ViewPie3D, true);

slice3.Explode = true;

 Figure 9-4. Data set into chart. Third slice is separated by using slice3.Explode = true.

Copyright LightningChart Ltd 2009-2023 281

9.4 Viewing pie chart in 2D

Set the camera as predefined camera from top.

chart.ViewPie3D.Camera.SetPredefinedCamera(PredefinedCamera.PieTop);

 Figure 9-5. Pie chart shown as 2D, with a predefined camera from top.

282 LightningChart® .NET User’s Manual, rev. 10.5

10. ViewPolar

ViewPolar allows data visualization in a polar format. The data point position is determined by angular

value and amplitude (compare angle as X and amplitude as Y in ViewXY). Polar view also has zooming

and panning features.

 Figure 10-1. ViewPolar object tree.

Copyright LightningChart Ltd 2009-2023 283

10.1 Axes

Polar axes can be defined via Axes list property. Several axes can be used in same chart. Series can be

assigned with any of these axes by setting AssignPolarAxisIndex property of a series. An axis represents

both angular scale and amplitude scale. Otherwise, the polar axes are very similar to ViewXY axes (see

chapter 6.2).

 Figure 10-2. AxisPolar property tree

284 LightningChart® .NET User’s Manual, rev. 10.5

Figure 10-3. Three axes, the first one (red) in the outer circle, the second (green) in the middle, and the third (blue) closest to
center. Axis AngleOrigin can be changed by dragging it over the axis circle. Amplitude range can be changed by dragging from the
axis. Minimum or maximum of axis amplitude range can be changed by dragging from the small nib in the end of the amplitude
scale.

 Reversed axes

The axis can be reversed by amplitude, angle or both. To reverse the angle scale, set AngularReversed =

True. To reverse the amplitude scale, set AmplitudeReversed = True.

Figure 10-4. On the left, scales are not reversed. On the right, AngularReversed = True and AmplitudeReversed = True.

Copyright LightningChart Ltd 2009-2023 285

 Setting rotation angles of the scales

Use AngleOrigin to set the rotation angle of angle scale.

Figure 10-5. AngleOrigin = 30.

Use AmplitudeAxisAngle to rotate amplitude axis position. Amplitude scale angle can be set as

absolute angle (AmpitudeAxisAngleType = Absolute), or relative (AmpitudeAxisAngleType = Relative).

to angle scale’s angle.

Figure 10-6. AngleOrigin = 30. AmplitudeAxisAngle = 90. On the left, AmplitudeAxisAngleType = Absolute. On the right,
AmplitudeAxisAngleType = Relative. Overall the amplitude scale rotates 120 degrees in this case.

286 LightningChart® .NET User’s Manual, rev. 10.5

 Setting divisions

Set the amplitude division count with MajorDivCount, and division magnitude with MajorDiv property. The

amplitude scale will adjust accordingly (updating MaxAmplitude). Set amplitude minor division count with

MinorDivCount.

By default, the chart tries to include almost as many angular divisions as it can fit. To control the angular

divisions, set AngularAxisAutoDivSpacing to False. Then the chart tries AngularAxisMajorDivCount count

of divisions. If chart space is too small to render all the divisions and labels, it will use a lower division count

that it can fit.

10.2 Margins

When AutoAdjustMargins is enabled, the graph size is adjusted so that there’s enough space for all the axes

and chart title. When it is disabled, ViewPolar.Margins property applies allowing setting margins manually.

In the run time, the margins rectangle can be retrieved in pixels by calling ViewPolar.GetMarginsRect

method, which applies to both automatic and manual margins. It is useful when needing to do screen-

coordinate based computation or object placement.

ViewPolar.MarginsChanged event can be set to trigger when a margin rectangle has been changed because

of for example resizing it.

The contents of the view are automatically clipped outside the margins. All contents are clipped other than

the chart title, annotations and legend boxes as their position is defined in screen coordinates, allowing them

to be freely positioned on the margins as well. A one-pixel wide border rectangle, Border, can be drawn to

display where the margins are. By default, the border is not visible in ViewPolar. The color of the rectangle

can be changed via Border.Color.

Copyright LightningChart Ltd 2009-2023 287

Figure 9-7. Contents of the polar chart are clipped outside the margins. Border is drawn to mark the margin area. Axis labels stay
visible inside the borderline.

288 LightningChart® .NET User’s Manual, rev. 10.5

10.3 Legend boxes

Modify the legend box properties via ViewPolar.LegendBox. Unlike ViewXY, ViewPolar can have only

one legend box.

Figure 10-8. Legend box properties in ViewPolar.

 Hiding palette scales

To hide the palette scale in a legend box, set PaletteScales.Visible = False. To resize it, set ScaleSizeDim1

and ScaleSizeDim2 properties.

Copyright LightningChart Ltd 2009-2023 289

 Legend box positioning in ViewPolar

ViewPolar’s legend boxes can be placed automatically or manually. Automatic placement allows them to

be aligned to the left/top/right/bottom side of the view, or the graph area. Control the position with

Position property. Some positioning options take margin area into account while some do not.

Options ignoring margins (placing the legend box in the margin area):

TopCenter, TopLeft, TopRight, LeftCenter, RightCenter, BottomLeft, BottomCenter, BottomRight,

Manual

Options placing the legend box inside the margin area:

GraphTopCenter, GraphTopLeft, GraphTopRight, GraphLeftCenter, GraphRightCenter,

GraphBottomLeft, GraphBottomCenter, GraphBottomRight

Offset property shifts the position by given amount from the position determined by Position property.

 // Setting legend box position, offset shifts from RightCenter position

 chart.ViewPolar.LegendBox.Position = LegendBoxPosition.RightCenter;

 chart.ViewPolar.LegendBox.Offset = new PointIntXY(-15, -70);

Manual positioning calculates the offset from the top-left corner of the legend box to the view’s top-left

corner. Note that this differs from TopLeft option, which is calculated from the top of the graph area.

290 LightningChart® .NET User’s Manual, rev. 10.5

10.4 PointLineSeriesPolar

Demo examples: Line series, sector; Palette-colored line series; Event-colored line series; Scatter points

selecting

ViewPolar’s PointLineSeriesPolar can be used to draw a line, a group of points or a point-line. Lots of line

and point styles are available in LineStyle and PointStyle properties.

Figure 10-9. Some data presented with ViewPolar’s PointLineSeries. Line and points are both visible.

 Setting data

 The code representing the data setting of the previous figure.

int iCount = 360;

PolarSeriesPoint[] points = new PolarSeriesPoint[iCount];

Random rnd = new Random();

for (int i = 0; i < iCount; i++)

{

points[i].Amplitude = 10.0 + 3.0 * rnd.NextDouble() + 5.0 *

 Math.Cos(AxisPolar.DegreesAsRadians((double)i * 1.0));

 points[i].Angle = (double)i;

 }

 chart.ViewPolar.PointLineSeries[0].Points = points;

Copyright LightningChart Ltd 2009-2023 291

A close look of the previous image reveals that the first and the last data points are not connected.

PointLineSeriesPolar has ClosedLine -property which when enabled, automatically draws a line between

these points.

 // Connect the first and the last data point.

 pointLineSeriesPolar.ClosedLine = true;

 Palette coloring

Line coloring supports palette. ColorStyle property can be used to select how the palette coloring is

applied.

• LineStyle: No palette fill. The color set in LineStyle.Color property applies

• PalettedByAngle: Data point Angle field determines the color

• PalettedByAmplitude: Data point Amplitude field determines the color

• PalettedByValue: Data point Value field determines the color

Figure 10-10. Palette coloring applied.

Use ValueRangePalette property to define the colors and value steps, it works similarly to ViewXYs' and

View3D's series.

292 LightningChart® .NET User’s Manual, rev. 10.5

 Custom shaping and coloring with CustomLinePointColoringAndShaping event

Custom coloring and coordinate adjustment can be made with CustomLinePointColoringAndShaping

event, which is called just before entering the rendering stage of the chart. It works in similar way than

the CustomLinePointColoringAndShaping event in ViewXY’s FreeformPointLineSeries (see chapter

6.14.2).

10.5 AreaSeries

Demo examples: Area series; Combined with markers; Spider / radar chart; Speedometer gauge

Area series allow data visualization in filled area style. The line style in the edge can be edited with

LineStyle property. Fill can be changed with FillColor property.

 Figure 10-11. Some data presented with ViewPolar’s AreaSeries.

 Setting data

 This code represents the data setting of previous figure.

int iCount = 360;

PolarSeriesPoint[] points = new PolarSeriesPoint[iCount];

Random rnd = new Random();

Copyright LightningChart Ltd 2009-2023 293

for (int i = 0; i < iCount; i++)

{

points [i].Amplitude = 30f + rnd.NextDouble() * 5f *

Math.Sin((double)i / 50f);

points [i].Angle = (double)i;

 }

 chart.ViewPolar.AreaSeries[0].Points = points;

10.6 Sectors

Demo examples: Line series, sector; Wind rose diagram; Scatter points selecting; Scanning radar

Sectors can be defined to indicate some angular or amplitude range. Define amplitude range with

MinAmplitude and MaxAmplitude properties. Define angular range with BeginAngle and EndAngle.

Move a sector by dragging it with mouse.

Figure 10-12. Two examples utilizing sectors. The first figure, Wind Rose diagram, is made with several sectors of different
colors. In the second figure, a dial is made with AreaSeries with a sector representing RPM meter red zone.

10.7 Annotations

Demo examples: Vectors

Annotations are similar to ViewXY’s Annotations (chapter 6.26) with the exception of Target and

Location being defined in Polar axis values. Sizing by axis values is not suitable and therefore Sizing

property has only values Automatic and ScreenCoordinates.

294 LightningChart® .NET User’s Manual, rev. 10.5

Figure 10-13. An annotation in Polar view.

10.8 Markers

Demo examples: Scatter points selecting; Combined with markers; Sonar fish indicator; Scanning radar

Markers can be used to mark a specific data value at certain position. Assign the marker with a preferred

axis by setting its AssignPolarAxisIndex. Define Amplitude and AngleValue properties to put it into place.

Edit Symbol to have the preferred appearance and define the marker text with Label property.

Markers can be moved by dragging them with mouse. Set SnapToClosestPoint to Selected or All to enable

nearest data point snapping when dragging it. Selected tracks only the series this marker is set to snap

to with SetSnapSeries() method. All tracks all series.

Figure 10-14. A couple of markers in a polar chart.

Copyright LightningChart Ltd 2009-2023 295

10.9 Data cursor

Starting from version 10.5, ViewPolar has a built-in data cursor, which automatically tracks the closest

series value to the mouse cursor and allows showing it in a result table. The cursor consists of hair cross

lines for amplitude and angular axes, tracking point at the location of the closest data value, axis labels

showing the current amplitude and angle values, and the result table, which besides the axis values also

shows the series name and its color.

Data cursor can be enabled or disabled via Visible property. It is also possible to hide some of the cursor

components such as the lines or the axis labels individually by setting ShowHaircrossLines or ShowLabels,

or other respective “Show” properties based on what should be hidden, false. The appearance of the

cursor can also be modified via component specific properties. LabelFont modifies the axis label texts,

and TrackingPointStyle allows altering the tracking point. Results property contains all the options to

modify the result table. To modify the individual components such as one of the labels or lines, use

options under Configure property.

// Enables data cursor but hides its axis labels.

_chart.ViewPolar.DataCursor.Visible = true;

_chart.ViewPolar.DataCursor.ShowLabels = false;

// Enabling and modifying the result table.

_chart.ViewPolar.DataCursor.ShowResultTable = true;

_chart.ViewPolar.DataCursor.Results.Background.Color = Colors.DarkBlue;

Figure 10-15. Data cursor in polar view. Result table has been set visible by enabling ShowResultTable.

296 LightningChart® .NET User’s Manual, rev. 10.5

Figure 10-16. Property tree of the data cursor.

Data cursor changes its behaviour depending on whether the tracked series has a visible line or just

visible data points (scatter plot). If the line is visible, the cursor finds the nearest series and its value

based on the cursor’s current X-position. If there are no lines visible, the cursor tracks the nearest data

point in any direction and shows it if it is near the cursor’s position. Enabling SnapToNearestDataPoint

overrides this making the cursor always finding the nearest actual data point value in any direction.

Data cursor works with PointLineSeriesPolar and AreaSeriesPolar. Sectors and Markers cannot be

tracked.

Copyright LightningChart Ltd 2009-2023 297

10.10 Zooming and panning

Zooming can be applied by code, by setting ZoomCenter and ZoomScale properties. ZoomCenter is

defined as relative X-Y ranges.

X = -1: polar view's left edge at center of chart area

X = 0: polar view's center at center of chart area

X = 1: polar view's right edge at center of chart area

Y = -1: polar view's bottom edge at center of chart area

Y = 0: polar view's center at center of chart area

Y = 1: polar view's top edge at center of chart area

ZoomScale is the magnifying factor. For example, value 2 makes the chart appear twice as large in both

X and Y direction compared to 1.

Mouse-zooming features can be configured in ZoomPanOptions property tree.

Figure 10-17. ViewPolar's ZoomPanOptions.

 Zooming operations and methods

Various zooming operations under ZoomPanOptions can be set as mouse actions. DefaultSettings

returns the initial zoom and centering settings. ZoomToData (called FitView before v8.4) moves the

view point to show all data inside the margins. ZoomToLabelsArea shows the whole data frame

including labels inside the margins.

298 LightningChart® .NET User’s Manual, rev. 10.5

ViewPolar has the ZoomPadding property, which works similarly to View3D (chapter 7.19.3).

The zooming operations can also be accessed in code as methods by using

ZoomToFit(ZoomAreaRound.AreaName). For instance, calling

ZoomToFit(ZoomAreaRound.LabelsArea) method gets the same result as performing

ZoomToLabelsArea operation via mouse action.

Figure 10-18. Polar chart before and after an zooming operation, ZoomPadding = 50. On top, the chart has been manually
zoomed but no zoom operation has been called; ZoomPadding has no effect. Below, ZoomToLabelsArea was used, which
also takes into account the labels when zooming.

Copyright LightningChart Ltd 2009-2023 299

10.11 Data clipping in ViewPolar

PointLineSeriesPolar, AreaSeriesPolar, Sectors and PolarEventMarkers have ClipInsideGraph -property,

which hides the data points if they are not within the radius of the graph area. The exact clipping point is

the outermost angular axis. By default, ClipInsideGraph is enabled for all series.

// Disabling clipping outside the graph

pointLineSeriesPolar.ClipInsideGraph = false;

CenterClipping was introduced in LightningChart version 8.5.1. It works similarly to ClipInsideGraph but

controls how data is clipped at the center of the polar chart, when for example amplitude axis is dragged

with mouse. CenterClipping has three options to choose from:

-None: The old behavior before version 8.5.1. Series are shifted to the opposite side of the center point,

and not clipped in any way (except for sectors).

-Center: Data is clipped at the center point of the graph and will never be shifted to the opposite side. This

is the default option.

-InnerCircle: Data is clipped at the innermost value of the amplitude axis, that is either the minimum or the

maximum of the axis, depending on the axis being reversed or not. If the chart has several amplitude axes,

series is clipped according to the axis it is assigned to.

// Setting PointLineSeriesPolar to be clipped below amplitude axis minimum, as

reversed axis is not used.

_chart.ViewPolar.Axes[0].AmplitudeReversed = false;

pointLineSeriesPolar.CenterClipping = CenterClipping.InnerCircle;

Center and InnerCircle -options are not always at the same location, as there is

InnerCircleRadiusPercentage -property, which can be used to leave empty space near the center of the

graph. In other words, it defines where an amplitude axis begins. InnerCircleRadiusPercentage is specific to

the axis it is set to, meaning it does not affect the other amplitude axes.

// Setting InnerCircleRadiusPercentage to 10 percent for this axis

chart.ViewPolar.Axes[0].InnerCircleRadiusPercentage = 10;

300 LightningChart® .NET User’s Manual, rev. 10.5

10.12 Custom controls – Half Donut

Demo examples: Half Donut

Half Donut, also known as half pie or semi circle, is a custom polar chart, which has been pre-configured to

a half donut shape. Although a regular polar chart could be used to create similar half donut charts, using

this custom control significantly reduces the steps user needs to do when implementing these charts.

Figure 10-20. Half donut example

Half Donuts can be added to an application the same way as LightningChart objects. First create a new Half

Donut object, then add it to a container element, Grid for instance. Configure the chart within

BeginUpdate() and EndUpdate() calls to reduce the number of frames needed to be rendered.

HalfDonut donut = new HalfDonut();

(Content as Grid).Children.Add(donut);

donut.BeginUpdate();

// Configure half donut chart here

donut.EndUpdate();

Figure 10-19. CenterClipping set to None on the left image, Center in the middle image and InnerCircle on the right image.
InnerCircleRadiusPercentage is set to 10 in each one of the images.

Copyright LightningChart Ltd 2009-2023 301

 Adding data

Data can be added to a Half Donut by calling AddSlice() -method.

// Adding a slice to a donut.

donut.AddSlice(100, "Electricity", Colors.Yellow);

Individual slices can removed via RemoveSlice() -method.

// Removing a slice at index 1.

donut.RemoveSlice(1);

Alternatively, use HideSlice() to hide and show the slices.

// Hiding the first slice.

donut.HideSlice(0, false);

// Showing the first slice.

donut.HideSlice(0, true);

 Configuring Half Donut charts

Half Donut charts have several configure options. Texts, start and end angles, as well as colorings can be

fully modified. The needle and the marker line can also be adjusted or hidden.

// Modifying texts

donut.Title = "Chart title";

// Using custom texts

donut.EndAndStartPointText = HalfDonut.EndAndStartPointTexts.Custom;

donut.CustomLeftSideText = "New text string";

donut.CustomNeedleText = "Needle text";

// Disable needle

donut.ShowNeedle = true;

There are three coloring scales available for donuts: HSV, HSVA and Slice. When using HSV or HSVA

colorings, adjust the individual channels, then use ColorStep to modify the color differences between the

slices.

// Setting colors.

donut.SelectedColorPalette = HalfDonut.ColorScale.HSVA;

donut.ColorStep = 5;

donut.Saturation = 0.9;

donut.StartingColorValue = 30;

donut.Value = 0.6;

donut.Alpha = 0.4;

When ColorScale is set to Slice, colors assigned when the slices are added via AddSlice(), apply.

GetInternalChart() method can be used to access the internal LightningChart component. This is useful

when the donut chart’s own properties are not comprehensive enough.

302 LightningChart® .NET User’s Manual, rev. 10.5

// Modifying the legend box.

donut.GetInternalChart().ViewPolar.LegendBox.Fill.Color = Colors.SkyBlue;

Alternatively, use various Get -methods, which allow accessing and modifying the internal LightningChart

components, such as Annotations, directly.

// Changing the internal annotation object.

donut.GetLeftSideText().TextStyle.Color = Colors.LimeGreen;

 HalfDonutControlPanel

HalfDonutControlPanel is a UI-element designed to modify Half Donut properties while application is

running. Adding the control panel to an application works similarly to adding a Half Donut chart. Create a

new HalfDonutControlPanel object and add it to a UI-container. After that, it is possible to add one or more

Half Donut objects to the control panel. The panel can then be used to modify the added donut charts.

// Creating a HalfDonutControlPanel

HalfDonutControlPanel cp = new HalfDonutControlPanel();

// Adding to a grid element

_controlGrid.Children.Add(cp);

// Add an existing half donut object.

cp.HalfDonuts.Add(donut);

Figure 10-21. HalfDonutControlPanel, dark theme has been selected.

Copyright LightningChart Ltd 2009-2023 303

11. ViewSmith

Smith charts are generally used in electronics in impedance measurements and impedance matching
applications.

Smith chart plots the data in real and imaginary values (R + jX).

 Data position is determined on 2D-plot by angular on circular Real and Imaginary log-log scales.

Figure 11-1. ViewSmith property tree.

11.1 Axis

The Smith chart has only one real axis, which can be configured via extended property tree Axis, see

figure 10-2.

Terms

Impedance = Z = R + jX

R = Resistance, Real part

X = Reactance, Imaginary part

X > 0: Capacitive
X < 0: Inductive

304 LightningChart® .NET User’s Manual, rev. 10.5

Figure 11-2. Smith axis property tree.

Most of the properties are identical to ViewPolar's axes and ViewXY's axes to customize and make the
chart more attractive. There are also advanced properties specific to ViewSmith adjustment, e.g.
GridDivCount, GridImg and GridReal, RealAxisLineVisible, ShowAbsoluteValues, ClipGridInsideGraph.

GridDivCount defines the amount of circular grid lines on Real Axes and logarithmic grid lines on

Imaginary scale.

GridImg and GridReal properties are responsible for customizing the grid lines either on Real or

Imaginary scales. In addition, Visible property can be used to hide the grid, thus a user may hide one of

them and continue to work with another.

RealAxisLineVisible property hides the axis line.

Copyright LightningChart Ltd 2009-2023 305

 Figure 11-3. Real grid lines are hidden, Imaginary lines are visible.

 Figure 11-4. Imaginary grid lines are hidden, real lines are visible.

306 LightningChart® .NET User’s Manual, rev. 10.5

ShowAbsoluteValues property defines which values will be on scales (absolute or normalised).

ClipGridInsideGraph makes the gridlines visible outside the chart circle.

 Figure 11-5. ClipGridInsideGraph = False.

The fully customized Smith chart can be seen below.

Copyright LightningChart Ltd 2009-2023 307

 Figure 11-6. Customized Smith chart.

11.2 Margins

When AutoAdjustMargins is enabled, the graph size is adjusted so that there’s enough space for all the

axes and chart title. When it is disabled, ViewSmith.Margins property applies allowing setting margins

manually.

In the run time, the margins rectangle can be retrieved in pixels by calling ViewSmith.GetMarginsRect

method, which applies to both automatic and manual margins. It is useful when needing to do screen-

coordinate based computation or object placement.

ViewSmith.MarginsChanged event can be set to trigger when a margin rectangle has been changed

because of for example resizing it.

The contents of the view are automatically clipped outside the margins. All contents are clipped other

than the chart title, annotations and legend boxes as their position is defined in screen coordinates,

allowing them to be freely positioned on the margins as well. A one-pixel wide border rectangle, Border,

can be drawn to display where the margins are. By default, the border is not visible in ViewSmith. The

color of the rectangle can be changed via Border.Color.

308 LightningChart® .NET User’s Manual, rev. 10.5

11.3 Legend boxes

Legend boxes in ViewSmith work exactly like in ViewPolar (see chapter 10.3). Modify the legend box

properties via ViewSmith.LegendBox.

11.4 PointLineSeries

Demo examples: Line and data cursor

ViewSmith’s PointLineSeries can be used to draw a line, a group of points or a point-line as in ViewPolar.

Lots of line and point styles are available in LineStyle and PointStyle properties.

Figure 11-7. Smith data series.

Copyright LightningChart Ltd 2009-2023 309

11.5 Setting data

The code below, will add one set of data points to the collection of the Smith chart.

SmithSeriesPoint[] m_aPoints;

PointLineSeriesSmith Series = new PointLineSeriesSmith(m_chart.ViewSmith, axis);

//Create data for series

m_iCount = 5000;

m_aPoints = new SmithSeriesPoint[m_iCount];

for (int i = 0; i < m_iCount; i++)

{

 // Sine from left to right

 m_aPoints[i].RealValue = i * (MaxReal / m_iCount);

 m_aPoints[i].ImgValue = Math.Sin(0.01 * i)/Math.PI * MaxReal;

}

Series.Points = m_aPoints;

//Add series to chart

m_chart.ViewSmith.PointLineSeries.Add(Series);

11.6 Annotations

Annotations are identical to ViewXY’s Annotations (chapter 6.26) except for Target and Location being

defined in smith axis values (real and imaginary). Sizing property has only the values Automatic and

ScreenCoordinates.

Figure 11-8. An annotation in ViewSmith.

310 LightningChart® .NET User’s Manual, rev. 10.5

11.7 Markers

Demo examples: Line and data cursor

Markers can be used to mark a specific data value at a certain position. Markers can be moved by

dragging them with mouse. This property has identical definition with ViewPolar's markers (see chapter

10.8).

Define ImgValue and RealValue properties to position it. Edit Symbol to have the preferred appearance

and define text with Label property.

Figure 11-9. A marker tracking a series in Smith view.

11.8 Data cursor

Starting from version 10.5, ViewSmith has a built-in data cursor, which automatically tracks the closest

series value to the mouse cursor and allows showing it in a result table. The cursor works identically to

Copyright LightningChart Ltd 2009-2023 311

the cursor in ViewPolar except for showing real and imaginary values instead of amplitude and angle.

Refer to chapter 10.9 to see how to configure the data cursor settings.

Data cursor tracks PointLineSeries but not Markers.

Figure 11-10. Data cursor in ViewSmith.

11.9 Zooming and panning

Zooming and panning options and and methods in ViewSmith work exactly the same as in ViewPolar

(chapter 10.10).

312 LightningChart® .NET User’s Manual, rev. 10.5

12. Color themes

The overall color theme of a chart can be set with ColorTheme property. Setting the theme will

override majority of the object colors in the created chart. Therefore, every manually assigned color

will be lost in the Visual Studio property grid without a warning. It is advised to first set the ColorTheme

and then modify the individual object colors.

 chart.ColorTheme = ColorTheme.SkyBlue; // Changing the color theme

Figure 12-1. Two color themes. On the left, default Dark theme with some custom colors. On the right, Aurora theme.

12.1 Custom themes

LightningChart allows creating custom color themes by updating CustomDynamicTheme -property.

There are two ways to do this. Either get the custom theme to a variable and update that, or set

ColorTheme to CustomDynamicTheme and update its properties.

// Method 1
ThemeBasics theme = _chart.CustomDynamicTheme;
theme.BackgroundColor = Colors.Black;
theme.ChartTitleColor = Colors.Green;
_chart.CustomDynamicTheme = theme;

// Method 2
_chart.ColorTheme = ColorTheme.CustomDynamicTheme;
_chart.CustomDynamicTheme.ChartTitleColor = Colors.Green;
_chart.UpdateCustomTheme();

Some themes use automatic coloring for axes and series. To manually set axis or series colors, disable

MultiColorAxis or MultiColorSeries respectively, then set the colors.

ThemeBasics theme = _chart.CustomDynamicTheme;
theme.MultiColorAxis = false;
theme.AxisColor = Colors.Blue;
_chart.CustomDynamicTheme = theme;

Interactive Examples demo application has ThemeCreator, which allows investigating the color themes

and creating new ones.

Copyright LightningChart Ltd 2009-2023 313

13. Scrollbars

Demo examples: Scroll bars; Historic data review; Scale breaks

One or more scrollbars can be added via HorizontalScrollBars or VerticalScrollbars collection property.

The appearance is fully customizable, allowing defining even oval shaped buttons and scroll box. For

example, a bitmap can be used as a button icon. Scrollbars can be used with all views, but the most

apparent usage is in ViewXY.

Figure 13-1. Two different looking scrollbars

13.1 Scrollbar properties

HorizontalScrollBar can be aligned to fit the width of the graph by setting Alignment property to

BelowGraph, AboveGraph or GraphCenter. Respectively, VerticalScrollBar can be aligned to fit the

height of the graph by setting Alignment property to LeftToGraph, GraphCenter or RightToGraph. By

setting Alignment to None, the scrollbar can be freely positioned with Offset property. Adjust its size

with Size property.

 // Setting the position and the size of a scrollbar. Offset is based on the

 top-left corner of the chart

 horizontalScrollBar.Alignment = HorizontalScrollBarAlignment.None;

 horizontalScrollBar.Offset = new PointIntXY(100, 10);

 horizontalScrollBar.Size = new Size(500, 30);

Scrollbars use 64-bit unsigned integer values instead of the usual 32-bit signed integer values. Value is

the current position, Minimum is the minimum range value and Maximum is the maximum range value.

This allows direct support for long measurements with high sampling frequency. For example, when

SampleDataSeries is used in the measurement, set the sample index directly as scrollbar value.

Minimum value represents the first sample index, and Maximum represents the last sample index.

SmallChange property is the amount of increment or decrement, when a scroll button is clicked. If

KeyControlEnabled is active and the scrollbar has focus, you can use also arrow keys to change the Value

by SmallChange amount. LargeChange represents a page change, which occurs when the scrollbar is

clicked outside the scroll box or scroll buttons. Use PageUp and PageDown keys to change the Value

respectively. WheelChange sets the change value when mouse wheel is scrolled over the scroll bar.

Scroll event handler can be used in code to react to scrollbar value changes. Alternatively, ValueChanged

event handler can be used. However, Scroll provides more information of how the scroll has been done.

314 LightningChart® .NET User’s Manual, rev. 10.5

13.2 Scrollbars with decimals or negative values

As scrollbars are designed to use unsigned integers to support long measurements, they cannot be

directly used when axis values are decimals or negative values. In these cases, the result will be a crash

or otherwise bad usability due to rounding errors. However, Scrollbar Minimum and Maximum values

do not have to be tied to axis ranges. This allows scaling the bars even if the axis values and/or data

values are small decimals or negative numbers.

For example, if the values to be shown range from 0.500 to 1.500, the scrollbar can be set to use range

500 -> 1500. Respectively, with data ranges from -150 to 0, the scrollbar can use values from 0 to 150.

The following example shows how to modify a vertical scrollbar when the Y-axis values are decimals

ranging from negative to positive.

double yMin = -0.178; // Some arbitrary axis values

double yMax = 1.253;

double upShift = 0.178; // To prevent the scrollbar from using negative values

double scaleFactor = 1000.0; // To scale the scrollbar to use integer values

_chart.ViewXY.YAxes[0].Minimum = yMin;

_chart.ViewXY.YAxes[0].Maximum = yMax;

_chart.VerticalScrollBars[0].Minimum = (ulong)((yMin + upShift) * scaleFactor);

_chart.VerticalScrollBars[0].Maximum = (ulong)((yMax + upShift) * scaleFactor);

_chart.VerticalScrollBars[0].LargeChange = _chart.VerticalScrollBars[0].Maximum

 - _chart.VerticalScrollBars[0].Minimum;

_chart.ViewXY.YAxes[0].SetRange(0.3, 0.6); // Display only a portion of the axis

// The scroll event

private void VerticalScrollBar_Scroll(object sender, ScrollEventArgs e)

{

 double newMin = (yMax + upShift) * scaleFactor - (double)e.NewValue -

 currentRangeY + (yMin + upShift) * scaleFactor;

 if (newMin < (yMin + upShift) * scaleFactor)

 {

 // The scroll bar cannot go below the minimum axis value

 newMin = (yMin + upShift) * scaleFactor;

 }

 double newMax = newMin + currentRangeY;

 if (newMax > (yMax + upShift) * scaleFactor)

 {

 // The scroll bar cannot go above the maximum axis value

 newMax = (yMax + upShift) * scaleFactor;

 newMin = newMax - currentRangeY;

 }

// Adjusting axis range based on the scrollbar value, triggers RangeChanged

event. Converts the values used by the scrollbar back to unscaled axis values

 _chart.ViewXY.YAxes[0].SetRange((newMin / scaleFactor - upShift) ,

 (newMax / scaleFactor - upShift));

}

Copyright LightningChart Ltd 2009-2023 315

// RangeChanged -event to modify the axis ranges correctly

private void AxisY_RangeChanged(object sender, RangeChangedEventArgs e)

{

 // Prevent axis minimum value from going below yMin set earlier

 if (e.NewMin < yMin)

 {

 double newRange = e.NewMax - e.NewMin;

 if (newRange <= yMax - yMin)

 {

 _chart.ViewXY.YAxes[0].SetRange(yMin, yMin + newRange);

 }

 else

 {

 _chart.ViewXY.YAxes[0].SetRange(yMin, yMax);

 }

 }

 // Prevent axis maximum value from going above yMax set earlier

 else if (e.NewMax > yMax)

 {

 double newRange = e.NewMax - e.NewMin;

 if (newRange <= yMax - yMin)

 {

 _chart.ViewXY.YAxes[0].SetRange(yMax - newRange, yMax);

 }

 else

 {

 _chart.ViewXY.YAxes[0].SetRange(yMin, yMax);

 }

 }

 // Modify the scrollbar based on the the new axis range.

 else

 {

 double newRange = (e.NewMax - e.NewMin) * scaleFactor;

 _chart.BeginUpdate();

 _chart.VerticalScrollBars[0].LargeChange = (ulong)(newRange + 0.1);

 _chart.VerticalScrollBars[0].Value = (ulong)((yMax - e.NewMax +

 yMin + upShift) * scaleFactor);

 _chart.EndUpdate();

 currentRangeY = newRange;

 }

}

316 LightningChart® .NET User’s Manual, rev. 10.5

14. Export and printing

 Bitmap image export

The chart can be exported as .PNG, .BMP and .JPG file with SaveToFile() method. SaveToFile(…) method

allows exporting image files with resolution decrement and smoothing/anti-alias options. To export to a

stream, use SaveToStream() method.

 Vector image export

ViewXY, ViewPolar and ViewSmith can be also exported as .WMF, .EMF and .SVG formats. View3D and

ViewPie3D don't currently support it. Use SaveToFile or SaveToStream method with selected vector file

format.

Note! The vector output is simplified and all details, such as complex point styles, may be presented as a

plain color and simple shape. The vector output may also contain some bitmap elements.

 Copy to clipboard

The chart can be copied to clipboard by calling CopyToClipboard(…). ViewXY, ViewPolar and ViewSmith

can copied with CopyToClipboardAsEmf() method in vector format.

Copyright LightningChart Ltd 2009-2023 317

 Capturing to byte array

The chart has CaptureToByteArray method, to get as a fast raw image data copy to external components

or further processing of data.

Usage

int width;

int height;

PixelFormat format;

byte[] aData = _chart.CaptureToByteArray(out width, out height, out

format);

Bitmap bitmap = new Bitmap(width, height,

System.Drawing.Imaging.PixelFormat.Format32bppArgb);

System.Drawing.Imaging.Bitmapdata bitmapData = bitmap.LockBits(new

System.Drawing.Rectangle(0, 0, width, height),

System.Drawing.Imaging.ImageLockMode.ReadOnly,

System.Drawing.Imaging.PixelFormat.Format32bppArgb);

IntPtr ipDst = bitmapData.Scan0;

int iRowByteCount = width * 4;

 int iSrcIndex = 0;

for (int iY = 0; iY < height; iY++)

{

Marshal.Copy(aData, iSrcIndex, ipDst, iRowByteCount);

ipDst = new IntPtr(ipDst.ToInt64() + bitmapData.Stride);

iSrcIndex += iRowByteCount;

}

bitmap.UnlockBits(bitmapData);

 Setting output stream for continuous frame writing

Use chart.OutputStream property to set a stream into which the chart will write it’s rendered frames.

This property is intended as the fastest way to capture continuous frames from the chart, especially on

Headless mode (see chapter 24).

The stream is a raw byte stream, with each pixel described with 4 bytes, one byte per channel. The

order of the channels depends on the renderer and its settings.

318 LightningChart® .NET User’s Manual, rev. 10.5

Use GetLastOutputStreamFormat and GetLastOutputStreamSize methods to find out the format and

output size of the last written image.

Produced image size should be the size of the chart in pixels.

Note! On the contrary to the other properties of the LightningChart, set stream is NOT disposed on

chart's dispose.

Note! On the contrary to the other properties, setting this property will not cause new frame to be

rendered.

 Printing

Call PrintPreview() method to open a print preview dialog or Print() to directly print with default settings.

Call Print(…) to print with manual settings. Printing ViewXY, ViewPolar and ViewSmith supports vector

printing as well. Supply Raster or Vector format to parameter to Print(…) method.

Figure 14-1. Print preview dialog.

Copyright LightningChart Ltd 2009-2023 319

15. LightningChart performance

15.1 Selecting the correct API edition

Select the chart edition as instructed in chapter 1.1. Do not use series data binding features unless

necessary.

15.2 Set the rendering options correctly

LightningChart's DirectX9 rendering engine may be slightly faster than DirectX11 engine in specific

applications, but generally, leaving DirectX11 as preferred renderer is a good choice. DirectX11 also gives

better appearance.

Fonts quality setting is important as well.

See chapter 5.11.

15.3 Updating chart data or properties

Every property or series data value change will cause the LightningChart control to be redrawn. Every

redraw will cause CPU and display adapter overhead. If more than one property is programmatically

changed at the same time, the property changes should be made between BeginUpdate() and

EndUpdate() method calls, as a batch. BeginUpdate() will stop drawing the control until EndUpdate() is

called. There is an internal counter for pending BeginUpdate() calls, and when an equal amount of

EndUpdate() calls have been reached, EndUpdate() redraws the control. The following example

demonstrates how to update chart with minimal load to the computer.

chart.BeginUpdate(); //Disable redraws

//Add data to series

chart.ViewXY.SampleDataSeries[0].AddSamples(multiChannelSampleStream[0],

false);
chart.ViewXY.SampleDataSeries[1].AddSamples(multiChannelSampleStream[1],

false);

chart.ViewXY.SampleDataSeries[2].AddSamples(multiChannelSampleStream[2],

false);

//Update point counter bar

chart.ViewXY.BarSeries[0].SetValue(0,1,(double)totalPointsCollected,””,

false);

320 LightningChart® .NET User’s Manual, rev. 10.5

// Point counter label

chart.Title.Text = totalPointsCollected.ToString();

// Set monitoring scroll position to latest x

newestX = firstSampleTimeStamp + (double)(pointsLen - 1) / genSampFreq;

chart.ViewXY.XAxes[0].ScrollPosition = newestX;

chart.EndUpdate(); // Enable redraws and redraw

 The internal counter allows using nesting updates as follows:

 void MainMethod()

 {

 chart.BeginUpdate();

 chart.Title.Text = “My title”;

 chart.ViewXY.XAxes[0].AxisColor = Colors.Red;

 UpdateSeriesColors();

 chart.EndUpdate();

 // Repaints only once.

 }

 private void buttonCreate_Click(object sender, EventArgs e)

 {

 UpdateSeriesColors(); // Repaints only once

 }

 void UpdateSeriesColors()

 {

 chart.BeginUpdate();

 foreach(PointLineSeries series in chart.ViewXY.PointLineSeries)

 {

 series.LineStyle.Color = Color.Yellow;

 }

 chart.EndUpdate();

 }

Updating series data depends on how the data is stored. For array series, InvalidateData() method has

to be called after updating the array contents, otherwise the UI doesn’t get notified about the changes.

ObservableCollection, useful for data binding in WPF bindable chart, will update itself with every point

or point's field because of automatic notifications. Thus, InvalidateData() is not needed. However,

ObservableCollections cause slightly reduced performance compared to arrays or lists, which is

noticeable especially when having a large amount of data points.

Copyright LightningChart Ltd 2009-2023 321

15.4 Line series tips

- When using a line series, use SampleDataSeries, if it is suitable for the application. It is the fastest

one to draw and doesn’t need as much memory as other line series types. If it is not an option, prefer

PointLineSeries over FreeformPointLineSeries.

- Set PointsVisible property false, if the data points don’t have to be visible.

- Set line width to 1 with LineStyle.Width property.

- Use solid line style by setting LineStyle.Pattern to Solid.

- Disable anti-aliasing by setting line series LineStyle.AntiAliasing to None and set chart’s

AntiAliasLevel to 0.

- Disable all mouse interactivity, by setting AllowUserInteraction of a series to false. Alternatively,

disable whole chart’s mouse interactivity by setting chart’s chart.Options.AllowUserInteraction to

false.

- Hide the legend box if there is no need for it. ShowInLegendBox -property can also be disabled for

all the series. These work especially when there are a lot of series in a chart.

chart.ViewXY.LegendBoxes[0].Visible = false;
chart.ViewXY.PointLineSeries[0].ShowInLegendBox = false;

15.5 Intensity series tips

Applies to: IntensityGridSeries, IntensityMeshSeries

- Change the Optimization property of the series to StaticData, if the data won’t be updated

continuously. DynamicData is better choice if data is changed many times per second.

- Use Optimization: DynamicValuesData to update only the Value fields of Data array’s

IntensityPoint structures, and call InvalidateValuesDataOnly method to update the chart. This way,

the update is much faster as the geometry of the series is not recalculated. This is only intended to

be used in applications where the data X and Y values of the nodes stay in the same place, for

example in thermal imaging solutions.

Applies to: IntensityGridSeries

- For high-resolution thermal imaging applications, enable PixelRendering for IntensityGridSeries.

- For rapidly updating data sets, use SetValuesData and SetColorsData methods instead of Data

property to save memory and to improve performance.

15.6 3D Orthographic view tips

Use View3D.Camera.Projection = Orthographic instead of OrthographicLegacy for maximum

performance. Difference can be seen especially when zooming the view while having lots of series and

data in it (see chapter 7.4).

322 LightningChart® .NET User’s Manual, rev. 10.5

15.7 3D surface series tips

Applies to: SurfaceGridSeries3D, SurfaceMeshSeries3D, WaterfallSeries3D

- Disable lighting by setting SuppressLighting to false if light reflections and shading are not needed.

- If contour lines are used, use FastColorZones or FastPalettedZones instead of ColorLines or

PalettedColorLines.

Applies to: SurfaceGridSeries3D

- With scrolling data (like 3D-spectrum or spectrogram), use InsertRowBackAndScroll and

InsertColumnBackAndScroll methods to update data and axis ranges.

15.8 Maps tips

Applies to: ViewXY.Maps

- Set ViewXY.Maps.Optimization to CombinedLayers in a typical situation where the X and Y axis

ranges are kept the same, and other data is presented over the maps. This allows the map layers to

be rendered into the same buffer image, resulting into more efficient rendering.

- Set ViewXY.Maps.Optimization to None, if the map titles should be displayed over IntensityGrid or

IntensityMesh series.

15.9 Hardware

To get the absolute maximum performance for a LightningChart application, the computer hardware

must be powerful. In many applications, display adapter power is more important than CPU power.

Use as modern display adapter as possible. DirectX 9.0c level display adapters work. ‘c’ comes from

DirectX Shader Model 3, which is required by some effects.

GetRenderDeviceInfo() method can be called to find out if some feature is not supported by the used

display adapter. Especially, if the returned information states that FastVertexFormat is not

supported, it is a bad thing for performance.

Note! LightningChart is a GPU hardware accelerated chart. Without a good GPU, the performance

may be much lower than in optimal case. A good resource to compare the performance of different

GPUs is PassMark’s Video Card Benchmarks (http://www.videocardbenchmark.net/gpu_list.php).

A video card having 10x better score than other, can be also 10 times faster in LightningChart use,

but overall difference in refresh rate is rarely that great, since another computer hardware may

become a bottleneck.

http://www.videocardbenchmark.net/gpu_list.php

Copyright LightningChart Ltd 2009-2023 323

16. LightningChart notifications, error and exception handling

From version 8.4 onwards LightningChart will send messages from the chart to the user through

ChartMessage event. The messages can contain notifications about for example chart performance,

incorrect usage, warnings or errors. Define a handler for chart.ChartMessage event to listen to the

messages. The event contains a ChartMessageInfo struct, which holds the message’s information.

Prior to version 8.4 chart sent messages through ChartError event (now marked as obsolete), which

contains less information than ChartMessage. User can listen to ChartError events instead of

ChartMessages and get the same base information, but it is recommended to use ChartMessage instead.

ChartMessageInfo’s MessageSeverity property tells how severe the message is. Messages can be filtered

based on their severity. Possible severity levels for messages are:

- Debug - Debug information which usually is not interesting to the user and no action is required.

- Information – An incorrect usage of a chart, for example using an invalid property setting, has

happened which should not impact chart performance. User action is typically not required.

- Warning – Some incorrect usage of chart, for instance using a disposed object, has happened

which might cause some minor problems with the chart such as performance loss. User action

might be required.

- RecoverableError – An error has occurred from which the chart should have recovered. User

must listen to ChartMessage events or messages with this severity will be thrown as exceptions.

- UnrecoverableError – An error has occurred from which the chart couldn’t recover. Might

indicate an incoming exception. User must listen to ChartMessage events or messages with this

severity will be thrown as exceptions.

- Critical – A critical error has occurred in the chart which will always be thrown as an exception.

MessageType property explains the basic type of the message while Details property has more specific

information about it. All the possible message types can be found in MessageType enum located in

LightningChart namespace.

Unwanted messages can be filtered out by changing the chart.Options.ChartMessageMinimumLevel

property value. The property allows only messages of the set minimum level and higher to be sent

through the event system. It is set to MessageSeverity.Warning by default.

Exceptions are thrown as ChartException objects, which contains ExceptionInfo struct with detailed

information about the exception similar to ChartMessage events. In some cases, the chart may throw

exceptions of other types, such as a rendering engine exception. If user wants the chart to raise an

exception on all messages with a severity level of MessageSeverity.Warning or higher,

chart.Options.ThrowChartExceptions property needs to be set true (is false by default).

It is recommended to always subscribe to ChartMessage event to be notified about errors in the chart

and possible exceptions from unlistened messages. In case of having any problems with the chart and

support for it is needed, please ensure there is a working message/exception handler in the application,

log the ChartMessages and include them in your support request.

324 LightningChart® .NET User’s Manual, rev. 10.5

17. ChartManager component

ChartManager control can be used to coordinate interoperation of several LightningChart controls. Add

ChartManager control to your form. Then, assign the manager control to ChartManager property of all

LightningChart controls.

17.1 Chart interoperation, drag-drop

ChartManager enables series drag-drop from chart to another in WinForms. For WPF it’s not usable for

technical reasons.

Series have DisableDragToAnotherAxis property which must be set to False to enable the dragging. It is

True by default.

Axes have AllowSeriesDragDrop property which can be set to False to prevent dragging over specific

axis. Default value is True.

Move mouse over the series to be dragged, press left mouse button down to start dragging.

Dragging over Y axis: Drag the series over Y axis of another chart and release the button. The other chart

takes the ownership of the series and the series is assigned to the target Y axis. This also assigns the first

X axis for the series.

Dragging over X axis: Drag the series over X axis of another chart and release the button. The other chart

takes the ownership of the series and the series is assigned to the target X axis. This also assigns the first

Y axis for the series.

17.2 Memory management enhancement

In some extreme real-time monitoring applications, the .NET garbage collector does not free unused

memory well enough, if the application is run with high CPU load. Garbage collector frees all the memory

at once, causing a visible ‘freeze’ or ‘pause’ when updating a chart. To make the chart updates smoother,

enable ChartManager’s MemoryGarbageCollecting property. This allows a separate thread to be used

to free the memory more often regardless of the CPU load. Using MemoryGarbageCollecting is

recommended to be used with multi-core processors, as the thread running will slightly load the CPU.

Copyright LightningChart Ltd 2009-2023 325

18. LightningChart® Trader

Trader libraries (Arction.Wpf.TradingCharts.dll / Arction.WinForms.TradingCharts.dll) consist of controls,

tools and methods for creating trading and finance applications easily. The Trader library is built over

robust and fast LightningChart API.

TradingChart is currently the main control. TradingChart comes with a compact interface of properties

and methods to build trading applications, without the API overhead that comes from complex

engineering applications. Current version includes WPF and WinForms Forms charts, UWP trading charts

will become available later.

This document illustrates the basic usage of LightningChart® TradingChart as well as most of its available

properties and settings. There are also several TradingChart based examples in Interactive Examples

application. It is recommended to check those as well to get better understanding of building trading

applications with TradingChart.

18.1 Basic usage

 Creating TradingChart

In order to use TradingChart, corresponding assemblies should be added to the project. First, add

Arction.Wpf.TradingCharts.dll to the References of the project.

using Arction.CustomControls.Trader.Wpf;

It is then possible to create TradingChart -objects.

// Creating a TradingChart component

TradingChart _chart = new TradingChart();

// Adding chart into the parent container, in this case a grid.
(Content as Grid).Children.Add(_chart);

It is also possible to create a TradingChart component by dragging it from Visual Studio’s toolbox. This

option is available if LightningChart .NET SDK v.9 or above has been installed to the machine.

The result of both of the actions above can be seen below.

326 LightningChart® .NET User’s Manual, rev. 10.5

Figure 18-1. A TradingChart has been created and added to a container.

 Using TradingChart in WinForms application

TradingChart is available for WinForms applications from LightningChart version 10.0 onwards. In

general, WinForms Trader works similarly to WPF Trader. All the features and properties are available

in both versions.

Creating a WinForms TradingChart in code:

using Arction.CustomControls.Trader.WinForms;

// Creating a TradingChart component

TradingChart _chart = new TradingChart();

// Adding chart into the parent container, in this case a grid.
_chart.Parent = this;

_chart.Dock = DockStyle.Fill;

 Deploying TradingChart

To be able to run TradingChart applications in computers the software is deployed into, a Deployment

Key has to be applied in code. This is done similarly to regular LightningChart (see chapter 4.4).

reference to the internal charting component has to be added to the project

(Arction.Wpf.Chart.LightningChart or Arction.WinForms.Chart.LightningChart).

Copyright LightningChart Ltd 2009-2023 327

18.2 Configuring user interface

TradingChart has several properties to control the appearance of the user interface.

 Setting color-theme

TradingChart has several pre-defined color-themes to choose from. SetAppearance() -method can be

used to change the theme.

// Setting a color-theme.
_chart.SetAppearance(Appearance.Dark);

Color-theme can also be changed via the tool menu, which by default is visible in the top right corner of

the chart.

Figure 18-2. Some of the pre-defined color-themes.

Note that changing color-theme overrides manually set colors for indicators and drawing tools.

Therefore, individual colors should be modified only after setting the color-theme.

328 LightningChart® .NET User’s Manual, rev. 10.5

 Setting price chart type

TradingChart allows setting in which format the trading data is displayed. Available types are

CandleSticks, Bars, Line and Mountain. PriceChartType -property can be used to change this.

// Show trading data as a mountain.
_chart.PriceChartType = PriceChartType.Mountain;

Figure 18-3. Available price chart types.

 UI components

TradingChart’s user interface has several built-in components, which can be hidden in case they are not

needed. All the components are visible by default.

Copyright LightningChart Ltd 2009-2023 329

Figure 18-4. TradingChart’s main user interface components, all of which can be hidden by disabling the respective
property.

Search bar allows searching trading data from a provider (AlphaVantage.co) based on a symbol or

company name. The visibility of the search bar can be controlled via ShowSearchBar -property.

// Hiding the search bar.
_chart.ShowSearchBar = false;

Indicator and Tool menus are located in the top-right corner of the chart. These menus contain all

available technical indicators and drawing tools. Tool menu also allows changing the color-theme of the

chart. These components can be hidden by disabling ShowToolMenu -property.

// Hiding the drawing tool and color-theme selection menu.
_chart.ShowToolMenu = false;

_chart.ShowIndicatorMenu = false;

The time range of the chart can be modified via the buttons in the bottom-right corner of the chart.

ShowTimeRangeSelection -property controls their visibility. Note that hiding the time range buttons

will automatically adjust the bottom margin in order to remove unneeded empty space below the

chart.

// Hiding the time range buttons.
_chart.ShowTimeRangeSelection = false;

330 LightningChart® .NET User’s Manual, rev. 10.5

Some technical indicators such as Volume and RelativeStrengthIndex are drawn in a separate segment

below the chart. In these cases, a horizontal line called Segment splitter is automatically drawn

between the segments. Dragging this line by mouse allows modifying the heights of the segments.

Segment splitters can be hidden by disabling ShowSegmentSplitters -property. This also prevents

modifying the segment heights by mouse dragging.

// Hide the vertical lines drawn between segments.
_chart.ShowSegmentSplitters = false;

18.3 Using internal LightningChart control

TradingChart is built on top of a regular LightningChart control. GetInternalChart() -method allows

direct access to TradingChart’s internal LightningChart control and all of its properties. It is therefore

possible to have a combination of features from both charts. To access the internal chart a reference to

respective assembly must be included in the project (i.e. Arction.Wpf.Charting.LightningChart).

// Changing properties of the internal chart
LightningChart chart = _tradingChart.GetInternalChart();
chart.ViewXY.GraphBackground.Color = Colors.Black;

// Alternatively
_tradingChart.GetInternalChart().ViewXY.GraphBackground.Color = Colors.Black;

// Adding a regular Annotation to a TradingChart
LightningChart chart = _tradingChart.GetInternalChart();
AnnotationXY anno = new AnnotationXY(chart.ViewXY, chart.ViewXY.XAxes[0],
chart.ViewXY.YAxes[0]);
chart.ViewXY.Annotations.Add(anno);

It should be noted that changing properties of TradingChart may override settings done directly to the

internal chart control. For example, modifying the appearance of TradingChart overrides the above

GraphBackground color setting. Furthermore, actions such as adding various series to their respective

collections should be done with caution as the same collections are also used by the TradingChart

series.

// Example of a conflicting situation.
LightningChart chart = _tradingChart.GetInternalChart();
StockSeries stockSeries = new StockSeries(chart.ViewXY, chart.ViewXY.XAxes[0],
chart.ViewXY.YAxes[0]);
chart.ViewXY.StockSeries.Add(stockSeries);

chart.ViewXY.StockSeries[0].Visible = false;

Copyright LightningChart Ltd 2009-2023 331

The above example does not change the visibility of the newly added StockSeries, instead the OHLC-

data loaded to TradingChart will be hidden as the same StockSeries collection is used by the

TradingChart and its internal chart. The loaded OHLC-data is rendered using a StockSeries which

reserves the first index of that collection.

18.4 Adding trading data

Trading data can be added to TradingChart by reading from a file, by fetching data from an internet

data provider, or by setting data in code via SetData() method. In the latter case, the trading data can

be from any source as long as it can be presented in OHLC-format.

 Data provider

TradingChart has a build-in data provider and search bar which allow searching for securities based on

a symbol or a security name. Unless hidden by disabling ShowSearchBar -property, the search bar is

always visible in the top-left corner of the chart. Securities can be searched by typing search string to

the text box and then pressing the “Search” -button or Enter key. The search results are then showed in

a list below the search bar. Clicking a result loads the corresponding trading data set from the provider

and adds it to the chart. “Loading data set…” text is displayed while the data is being fetched.

Depending on the provider and the size of the data set, this can take up to several seconds.

Figure 18-5. Security search based on the search term “apple”. The results are listed below the search bar.

332 LightningChart® .NET User’s Manual, rev. 10.5

Fetching data is also possible without using the search bar. OpenSymbol() -method can be used in code

behind to obtain data according to chart’s Symbol property.

// Fetch data from internet based on symbol “GOOG”.

_chart.Symbol = "GOOG";
_chart.OpenSymbol();

OpenSymbol() automatically adds the obtained data to the chart. Furthermore, it fetches information

based on Symbol, such as currency, and shows that in the chart’s title.

DataRequestType -property sets the preferred data format when requesting data from the provider.

Based on this setting, the returned data string will be in either json or csv format.

// Data is requested from a provider as a csv formatted string
_chart.DataRequestType = DataRequestType.Csv;

DataRequestType affects the pre-defined provider if it supports fetching data in multiple formats and

works also if user has a customer specific Rest Api key for it. Note that requesting a json string is often

faster compared to csv.

 From file

TradingChart can read trading data directly from a .csv -file via GetOhlcDataFromFile() -method. It

takes file name (and path) as a parameter and returns an array of OHLC -data.

// Read trading data from a file
OhlcData[] dataFromFile = _chart.GetOhlcDataFromFile("fileName.csv");

GetOhlcDataFromFile() -method assumes that the data in the file is in the following column order:

DateTime, Open, Close, High, Low, Volume (Optional), OpenInterest (Optional). DateTime field doesn’t

have to contain hours, minutes and seconds. Currently, accepted date formats are “yyyy-mm-dd”, “yy-

mm-dd” and “dd-mm-yyyy”. Accepted separators include dash (-) and backslash (/).

SetData() -method allows adding the loaded trading data to the chart:

// Set data to the chart
_chart.SetData(dataFromFile, "Symbol", "Data set title");

Loading data from a file automatically adjusts the time range of the chart based on the first and the last

DateTime values of the data set.

Copyright LightningChart Ltd 2009-2023 333

 Custom data provider

TradingChart uses pre-defined data providers unless set otherwise. MarketStack and AlphaVantage.co

are currently available. However, it is recommended to use these data providers for testing and

learning purposes only, since they are used by all users and there often are limits on how many data

requests are allowed. Therefore, we recommend using an own ApiKey or data provider for the final

product.

If user wants to use some of the pre-defined data providers but use an own API key, SetRestApiKey() -

method should be used. This method makes TradingChart to use the given key when requesting trading

data.

// Makes requests from a data provider to use the given key.
chart1.SetRestApiKey("apiKey");

Note that setting DataProvider resets the current API key. Therefore SetRestApiKey() should be called

only after the provider has been set.

With Trader’s source code, user has also the option to create an own data provider class, in which case

the search bar will also work. If pre-defined data provider should not be used, DataProvider -property

should be set to UserDefined. This prevents TradingChart from trying to automatically fetch data from

a provider.

// Set chart not to use pre-defined data provider.
_chart.DataProvider = DataProvider.UserDefined;

One way to add trading data when no pre-defined data provider is used is to define an own OhlcData -

array and use SetData() -method. The OhlcData -array does not have to be filled by reading the data

from a file. It is entirely up to the user to decide from where and how the data is obtained, and then

implement the necessary logic.

OhlcData[] dataArray = new OhlcData[dataPointCount];

// Fill the Ohlc-data array with the fetched data.

_chart.SetData(dataArray, "currency", "dataSetTitle");

334 LightningChart® .NET User’s Manual, rev. 10.5

 Adjusting time range

The time range of the chart can be adjusted via the buttons in the bottom-right corner of the chart.

Clicking a button automatically modifies the trading data based on the selected time value. If the data

has been fetched from a provider, a new data set from the provider will be requested.

If the selected time range is longer that the length of available data, time range will be adjusted based

on the data. For instance, if three years is selected but there is only one year of data available, time

range of one year will be shown. Furthermore, the selected time range is always based on the latest

time value of the loaded data set. If trading data is obtained from a provider, the latest time value

usually is the current time. However, this is not always the case is the data is loaded from a file. For

example, if the latest date of the data is 31.08.2019, selecting one-year time range shows data between

01.09.2018 – 31.08.2019.

TradingCharts also have methods for setting custom time range in code. OpenSymbol() -method can be

given start and end time parameters, in which case only data for that time range is requested from the

provider.

// Request data for the first half of the year 2018.
_chart.Symbol = "GOOG";
_chart.OpenSymbol(new DateTime(2018, 1, 1), new DateTime(2018, 6, 30));

If no parameters are given to OpenSymbol(), the current time range is used.

Another way to adjust time range is SetTimeRange() -method, which can be used also with data loaded

from a file.

// Adjust time range to show the first half of the year 2018.

chart1.SetTimeRange(new DateTime(2018, 1, 1), new DateTime(2018, 6, 30));

If current trading data has been loaded from a provider, a new data set is automatically requested from

the provider based on the given time range and the current Symbol setting. SetTimeRange() works

even when no data is loaded to chart. Data requests after this method has been called also use this

time range unless modified again.

Note that pressing the time range buttons below the chart, or loading data from a file, override the

time range set by SetTimeRange().

Copyright LightningChart Ltd 2009-2023 335

18.5 Data cursor

TradingChart has a built-in data cursor which automatically tracks the visible trading data and technical

indicators and shows their current values in a legend box. The cursor tracks data and indicators which

are in the segment the mouse is currently over on. For instance, Volume values will not be tracked as

they are shown in a separate segment below the chart, unless mouse is moved over that segment in

chart. Data cursor does not track drawing tools.

Data cursor tracks the Close values of the OHLC-data by default. This can be changed via OhlcField -

property.

// Set cursor to track High values.
_chart.DataCursor.OhlcField = PriceChartOhlcField.High;

Figure 18-6. Data cursor tracking trading data and every added indicator. The price values are shown in the legend box next
to the cursor. Volume is not tracked since it is shown in a separate segment.

By default, all data and every indicator will be tracked. It is however possible to control which series

should be tracked. TrackOhlcData -property can be disabled to prevent the cursor from tracking the

OHLC data.

// Data cursor doesn’t track the OHLC data loaded to chart.

_chart.TrackOhlcData = false;

336 LightningChart® .NET User’s Manual, rev. 10.5

Disabling TrackOhlcData affects only the OHLC data, indicators will still be tracked. To prevent cursor

from tracking specific indicators, their TrackIndicator property can be disabled.

// Stops tracking this indicator

simpleMovingAverage.TrackIndicator = false;

TrackIndicator is available for indicators which are drawn in the same segment as OHLC data. In other

words, segment indicators such as Volume and Relative Strength Index are always tracked if mouse is

moved over the segments they belong to.

18.6 Data packing

TradingChart has DataPacking property which when enabled, causes data values close to each other be

packed to a single rendered item. This improves performance, especially with larger data sets, but the

data might not be as accurate as without packing.

// Enabling data packing.

_chart.DataPacking = true;

18.7 Technical indicators

TradingChart has several built-in Technical Indicators, which are automatically calculated based on the

loaded trading data. Some indicators also have certain user-defined property settings affecting the

calculations, for example time period count for determining the number of days the indicator is based

on.

 Adding indicators

TradingChart has an Indicators list which is used to store all technical indicators. To add any technical

indicator to the chart, first create and configure the indicator, then add it to Indicators -list.

For example, adding a RelativeStrengthIndex:

RelativeStrengthIndex rsi = new RelativeStrengthIndex()

{

 LineWidth = 1f,

 PeriodCount = 14,

 HighColor = Colors.Lime,

 LowColor = Colors.Red

};

_chart.Indicators.Add(rsi);

Copyright LightningChart Ltd 2009-2023 337

All the available indicators can also be added via the Indicator menu in the top-right corner of the chart.

The indicators added this way always use their default settings for properties such as PeriodCount.

 Removing indicators

Removing technical indicators can be done by removing them from TradingChart’s Indicators list. The

indicator is automatically disposed after removing it from the list.

_chart.Indicators.Remove(indicator);

Removing all indicators of same type:

List<Indicator> itemsToRemove = new List<Indicator>();

foreach (Indicator ind in _chart.Indicators)

{

 if (ind is RelativeStrengthIndex)

 itemsToRemove.Add(ind);

}

foreach (Indicator i in itemsToRemove)

 _chart.Indicators.Remove(i);

 Indicator types and properties

Technical indicators are either drawn on top of the trading data in the main segment (overlay), or in a

separate segment below the chart (study) in which case the segment is automatically created when the

indicator is added.

Indicators have several properties that can be used to modify their appearance or the calculations they

are based on. These properties can be modified when the indicator is created or any time after its

creation.

// Modifying indicator properties after its creation.

rsi.PeriodCount = 10;

rsi.LineColor = Colors.Blue;

rsi.LineWidth = 2;

Common indicator properties:

PeriodCount Set the number of time periods used to calculate indicator values. Default

 value depends on the indicator.

LineWidth Set the width of the indicator line where applicable. If the indicator composes

 of several lines, the property affects them all.

Color Set the color of the indicator line where applicable. If the indicator composes

 of several lines, there is a separate Color-property for each line.

338 LightningChart® .NET User’s Manual, rev. 10.5

TrackIndicator When enabled, data cursor will track this indicator and show its current value

 in the legend box. Only applicable to indicator shown on top of the trading

 data. Indicators in separate segments are always tracked.

LimitYToStackSegment If enabled, the indicator is clipped outside its segment.

Some technical indicators also have properties that are specific to that indicator, for instance

NumberOfStandardDeviations for Bollinger Band. These properties are set similarly to the common

properties.

 List of available indicators

Envelopes

- Bollinger Band

- Donchian Channels

- Fractal Chaos Bands

- High Low Bands

- Keltner Channels

- Moving Average Envelopes (MAE)

- Prime Number Bands

- Standard Error Bands

- Stoller Average Range Channel

Moving Averages

- Exponential Moving Average (EMA)

- Simple Moving Average (SMA)

- Triangular Moving Average (TMA)

- Time Series Moving Average (TSMA)

- Variable Index Dynamic Average (VIDYA)

- Variable Moving Average (VMA)

- Volume Weighted Moving Average (VWMA)

- Weighted Moving Average (WMA)

- Welles Wilder’s Smoothing Average (WWS)

Oscillators – Money Flow

- Accumulation/Distribution (A/D)

- Chaikin Money Flow

- Chaikin Oscillator

- Ease of Movement

- Elder’s Force Index

- Klinger Volume Oscillator (KVO)

- Market Facilitation Index

- Money Flow Index

- Negative Volume Index

Copyright LightningChart Ltd 2009-2023 339

- On-Balance Volume (OBV)

- Positive Volume Index

- Price Volume Trend

- Trade Volume Index

- Twiggs Money Flow

- Volume

- Volume Oscillator

- Volume Rate of Change (Volume ROC)

- Williams Accumulation Distribution (Williams AD)

- Williams Variable Accumulation Distribution (WVAD)

Oscillators – Price

- Aroon Oscillator

- Awesome Oscillator

- Balance of Power

- Commodity Channel Index (CCI)

- Center of Gravity

- Chande Forecast Oscillator (CFO)

- Chande Momentum Oscillator (CMO)

- Coppock Curve

- Detrended Price Oscillator

- Elder-Ray Index

- Elder Thermometer (custom version)

- Fractal Chaos Oscillator (FCO)

- Intraday Momentum Index (IMI)

- Moving Average Convergence Divergence (MACD)

- Moving Average Convergence Divergence Custom (MACD Custom)

- Momentum Oscillator

- Percentage Price Oscillator (PPO)

- Performance Index

- Pretty Good Oscillator

- Prime Number Oscillator (PNO)

- QStick

- Rainbow Oscillator

- Rate of Change (ROC)

- Relative Strength Index (RSI)

- Stochastic Momentum Index (SMI)

- Stochastic Oscillator

- Stochastic Oscillator Smoothed

- True Strength Index (TSI)

- Ultimate Oscillator

- Ultimate Oscillator Smoothed (UO ST)

- Williams Percent Range (Williams %R)

340 LightningChart® .NET User’s Manual, rev. 10.5

Statistics

- Correlation Coefficient

- Kurtosis

- Median Price

- Skewness

- Standard Deviation

- Standard Error

- Typical Price

- Weighted Close

Trend Indicators

- Accumulative Swing Index (ASI)

- Average Directional Index (ADX)

- Aroon

- Gopalakrishnan Range Index (GAPO)

- Ichimoku Cloud

- Linear Regression

- Parabolic Stop-and-Reverse (PSAR)

- Random Walk Index

- Range Action Verification Index (RAVI)

- Schaff Trend Cycle (STC)

- Schaff Trend Cycle Signal (STC Signal)

- System Quality Number Trend (SQN Trend)

- Supertrend

- Swing Index

- Triple Exponential Average (TRIX)

- Vertical Horizontal Filter (VHF)

Volatility

- Average True Range (ATR)

- Chaikin Volatility

- Ehler Fisher Transform

- High Minus Low

- Historical Volatility

- Mass Index

- Z-Value

Other Indicators

- Open Interest

Copyright LightningChart Ltd 2009-2023 341

Two Histograms and Line

Two Histograms and Line is a custom indicator which allows showing given data in a separate segment

using two histogram and a line. Unlike the other indicators the data isn’t based on the loaded OHLC-

dataset. Instead, a separate dataset can be assigned to the indicator.

Properties and methods specific to Two Histograms and Line:

LineSeriesTitle Sets the title for the indicator line.

HistogramColor1 /

HistogramColor2 Sets the color for the bars in the respective histogram.

HistogramWidth1 /

HistogramWidth2 Sets the width for the bars in the respective histogram.

HistogramTitle1 /

HistogramTitle2 Sets the title for the respective histogram.

HistogramsStacked When enabled, the two histograms are stacked on top of each other.

AddLine() Adds the line to the indicator. Needs a DateTime array, Y-value array, line

 width and color as parameters. Note that this should be called after the

 indicator has been added to the chart’s indicator collection.

AddHistogram() Adds a histogram to the indicator. Needs a DateTime array, Y-value array, bar

 width, color and histogram index as parameters. The last parameter accepts

 values 1 and 2. The number indicates which histogram should be addedor

 updated. Note that this should be called after the indicator has been added to

 the chart’s indicator collection.

342 LightningChart® .NET User’s Manual, rev. 10.5

18.8 Drawing tools

Drawing tools are visual tools which can be freely drawn on the TradingChart. All drawing tools, except

FreehandAnnotation, are based on two or more control points. The first point is set when drawing a

drawing tool has started. The next control points are set when the chart is left-clicked. These control

points can also be moved by mouse after they have been set. Drawing tools are drawn and updated in

real-time during drawing and while control points are being moved.

Figure 18-7. Trend line has been drawn. Control points can be seen at both ends of the line.

 Adding drawing tools

Drawing tools can be drawn by calling their StartDrawing() -method. After the method has been called,

drawing is started as soon as the chart is left-clicked, which then sets the first control point. Drawing is

stopped by left-clicking the chart again.

// Start drawing a yellow Trend line.

TrendLine trendLine = new TrendLine();

trendLine.LineColor = Colors.Yellow;

_chart.DrawingTools.Add(trendLine);

trendLine.StartDrawing();

Copyright LightningChart Ltd 2009-2023 343

TradingChart also has a build-in Tool menu for drawing tools, located in the top-right corner of the

chart. This menu can also be used to change the color-theme. Opening the menu and selecting a

drawing tool instantiates the respective drawing tool and enters drawing mode by internally calling

StartDrawing(), meaning that left-clicking the chart adds the first control point.

Adding drawing tools in code behind works similarly to adding technical indicators. TradingChart has

DrawingTools list which is used to store all the drawing tools. However, since drawing tools are drawn

based on two control points, these points have to be set via SetControlPointsAndDraw() -method.

// Adding a drawing tool in code behind

FibonacciArc fibonacciArc = new FibonacciArc();

fibonacciArc.FillEnabled = true;

_chart.DrawingTools.Add(fibonacciArc);

// Setting control points.
fibonacciArc.SetControlPointsAndDraw(

 new Point(10, 200),

 new Point(20, 300)

);

Note that drawing tool has to be added to DrawingTools collection before setting its control points.

Furthermore, currently it is not possible to add FreehandAnnotations in code behind.

 Removing drawing tools

Drawing tools can be removed by highlighting one of the control points via mouse over and pressing

Delete. Removing drawing tools in code is done similarly to indicators (see Removing indicators

chapter). Also, calling DisposeAllDrawingTools() -method removes all drawing tools from the chart.

// Clears and disposes all drawing tools.

_chart.DisposeAllDrawingTools();

When new trading data is set to chart or when time range is changed via time range buttons, all

drawing tools are by default automatically cleared. AutoClearDrawingTools -property controls this

functionality. Its default value NewDataAndTimeRange causes the above behaviour. Setting the

property to NewData clears drawing tools when a new data set is loaded, but not when time range is

changed. None prevents all automatic clearing (calling DisposeAllDrawingTools() -method still works).

// Clear drawing tools when new data set is loaded but not when time range is

changed.

_chart.AutoClearDrawingTools = ClearDrawingTools.NewData;

344 LightningChart® .NET User’s Manual, rev. 10.5

 List of Drawing tools

There are several properties that all drawing tools have.

Common drawing tool properties:

LineColor Set the color of all the lines the drawing tool has. Affects also control points.

LineWidth Set the width of all the lines the drawing tool has. Affects also control points.

LabelColor If the drawing tool has text labels, changes their color.

Magnetic When enabled, the drawing tool lines are automatically attached to the

 nearest OHLC-value in vertical direction. Disabled by default.

LimitYToStackSegment If enabled, the drawing tool is clipped outside the main segment.

Elliot Wave

Elliot Wave draws a wave pattern between several control points.

Properties specific to Elliot Wave:

WaveType Changes the type of the wave. The wave types differ in length and in the

 markings used.

Figure 18-8. Elliot Wave has been drawn to the chart.

Copyright LightningChart Ltd 2009-2023 345

Fibonacci Arc

A trend line is drawn between two control points, followed by multiple arcs intersecting the line at

levels 38.2%, 50.0%, 61.8% and 100%. The arcs are centered on the second control point.

Properties specific to Fibonacci Arc:

FillEnabled When enabled, the areas between the arcs are colored.

LabelDistance Controls how far in pixels the labels are from their respective arc lines.

FullCircle When enabled, the arcs are drawn as full circles.

Figure 18-9. A Fibonacci Arc has been added to the chart.

Fibonacci Fan

Draws a trend line between two control points, then several Fibonacci fan lines starting from the first

point and crossing an “invisible” vertical line at the X-value of the second point based on Fibonacci

levels at 38.2%, 50.0% and 61.8%.

Properties specific to Fibonacci Fan:

FillEnabled When enabled, the areas between the fan lines are colored.

LabelDistance Controls how far in pixels the labels are from their respective fan lines.

346 LightningChart® .NET User’s Manual, rev. 10.5

Figure 18-10. A Fibonacci Fan with colored fills enabled (FillEnabled = true).

Fibonacci Retracements

Draws a trend line between two control points, then several horizontal retracement lines based on

selected price range (height) of the trendline. The retracement lines are drawn at Fibonacci level of

38.2%, 50.0% and 61.8%.

Properties specific to Fibonacci Retracements:

FillEnabled When enabled, the areas between the retracement lines are colored.

LabelDistance Set how far in pixels the labels are from the respective retracement lines.

Figure 18-11. Fibonacci Retracements with colored fills enabled (FillEnabled = true).

Copyright LightningChart Ltd 2009-2023 347

Freehand Annotation

Draws a polygon of any shape based on the mouse movement. A text can be shown inside the polygon.

Properties specific to Freehand Annotation:

FillColor Changes the fill color of the annotation

BorderColor Changes the border color of the annotation

BorderWidth Changes the border width of the annotation

FillEnabled When enabled, fills the annotation with color set via FillColor.

ShowText When enabled, shows a text inside the annotation. The location of the text is

 calculated automatically to be in the center of gravity.

AnnotationText Sets the text to be shown when ShowText is enabled.

TextColor Sets the color of the text.

FontSize Sets the font size of the text.

Figure 18-12. A Freehand Annotation has been drawn. A text is shown in the center of the annotation (ShowText = true).

348 LightningChart® .NET User’s Manual, rev. 10.5

Head and Shoulders

Head and Shoulders pattern draws a baseline with three peaks.

Properties specific to Head and Shoulders:

FillColor Changes the fill color of the peak areas.

Figure 18-13. Head and Shoulders pattern in a trading chart.

Linear Regression

Calculates and draws a linear regression line between two control points. Then draws two channel

lines, one above and one below the regression line based on the selected channel type.

Properties specific to Linear Regression:

ShowExtensions When enabled, draws dashed extension lines which extend to the last value of

 the loaded trading data.

FillEnabled When enabled, colors the areas between the channel and the regression line.

ChannelType Determines the used Linear Regression Channel type such as standard

 deviation channel, Raff channel and regression line only.

NumberOfStandardDeviations Sets the number of standard deviations defining how far the channel

 lines are from the regression line. Has effect only when ChannelType is set to

 StandardDeviations.

Copyright LightningChart Ltd 2009-2023 349

Pitchfork

Pitchfork, also known as Andrews Pitchfork, can be used to identify support and resistance levels for a

stock's price. It places three control points on the chart and draws a line from the first point through

the midpoint of the other points.

Properties specific to Pitchfork:

FillColor Changes the fill color of the area between the Pitchfork lines.

Figure 18-15. Pitchfork has been added tot he chart.

Figure 18-14. A Linear Regression Channel based on one standard deviation, ChannelType = StandardDeviations,
NumberOfStandardDeviations = 1.

350 LightningChart® .NET User’s Manual, rev. 10.5

Trend Line

Draws a straight line between two control points.

Properties specific to Trend Line:

ShowExtensions When enabled, draws dashed extension lines which extend to the first and the

 last value of the loaded trading data.

Triangle

Draws a triangle based on three control points.

Properties specific to Triangle:

FillColor Changes the fill color of the Triangle.

Figure 18-16. Trend Line with extensions enabled (ShowExtension = true).

Copyright LightningChart Ltd 2009-2023 351

Figure 18-17. Triangle on a trading chart.

XABCD Pattern

Draws a five point pattern to the chart.

Properties specific to XABCD Pattern:

FillColor Changes the color XAB- and BCD-areas of the pattern.

ShowRatios When enabled, shows ratio values between varios legs. Set true by default.

Figure 18-18. XABCD Pattern has been added to the chart. ShowRatios is enabled.

352 LightningChart® .NET User’s Manual, rev. 10.5

Other available drawing tools

- Arrow

- Ellipse

- Fibonacci Time Zones

- Horizontal Line

- Horizontal Ray

- Plain text

- Rectangle

- Text Box

- Vertical Line

18.9 TradingChart troubleshooting

TradingChart automatically shows some error messages when something is not working as expected.

The messages are displayed on top of the chart as well as in Visual Studio’s output window. The error

text above the chart is removed when it is either clicked or a new data set is loaded to the chart.

Figure 18-19. An error message is displayed above the chart.

It is possible to disable the error messages shown above the chart via ShowErrorMessages -property in

which case they are shown only in the output window.

// Do not show error messages above the chart.
_chart1.ShowErrorMessages = false;

 Error list

Below is a list of several error messages, possible reasons for them, and how they could be fixed. Note

that the list does not contain every possible error. In case an error cannot be solved, contact

LightningChart’s technical support at support@lightningchart.com.

mailto:support@lightningchart.com

Copyright LightningChart Ltd 2009-2023 353

Message: “Unable to obtain data from provider.”

Explanation: TradingChart cannot connect to data provider and therefore cannot fetch any data.

Possible fix: Ensure that Internet connection is working.

Message: “No data for given time range.”

Explanation: There is no trading data found for the given time range. This message can occur with data

set loaded from a provider as well as with a set loaded from file.

Possible fix: Try using a different time range.

Message: “Time range set to: start time – end time”

Explanation: This is not an actual error. Instead it informs that the time range was changed, but the

change is not visible because there is no data loaded to the chart.

Possible fix: Call SetTimeRange() after a data set has been loaded. Alternatively, just load a new data

set from a provider in which case the previously set time range will be used.

Message: “End time should be after start time.”

Explanation: Time range is set incorrectly when setting it manually.

Possible fix: Ensure that the start date of the time range is before the end date.

Message: “Couldn’t obtain Symbol information.”

Explanation: Happens when calling OpenSymbol() -method in code. The method tries to fetch

corresponding symbol information as well as the data set. The message indicates that obtaining symbol

information has failed. The data set could still have been loaded in some cases.

Possible fix: Check that the given symbol string is correct. If the error still occurs, data provider itself

can have some temporary issues.

Message: “The requested stock could not be found.”

Explanation: Data provider cannot find the provided symbol or security name. This error can happen

when calling OpenSymbol() -method in code or when using the search bar.

Possible fix: Check that the given symbol string is correct. If the error still occurs, data provider itself

can have some temporary issues or simply does not have access to that particular security.

354 LightningChart® .NET User’s Manual, rev. 10.5

Message: “Invalid API call. Unable to fetch data with the given parameters.

Explanation: Data provider cannot find data with the given parameters. This error happens mostly

when calling OpenSymbol() -method in code.

Possible fix: Check that the given symbol string is correct. If the error still occurs, data provider itself

can have some temporary issues or simply does not have access to the data of that particular security.

Alternatively, a security might not have weekly or monthly data available if using time ranges of several

years.

Message: “Call limit reached.”

Explanation: Data providers may have a call limit, for example maximum amount of data requests per

minute or per day. This error indicates that the limit has been reached.

Possible fix: Try requesting data again later. Alternatively, get a personal rest API key which allows more

data requests.

Message: “Invalid data provider API key.”

Explanation: An incorrect Rest API key is given to SetRestApiKey() -method when using customer-

specific key.

Possible fix: Ensure that a valid key is used. If the error occurs when using pre-defined data provider, try

setting DataProvider to MarketStack (or AlphaVantage) in code, which should reset the connection.

_chart.DataProvider = DataProvider.MarketStack;

Message: “Data array contains no points.”

Explanation: This message occurs only when SetData() -method is called in code while being given an

empty data array.

Possible fix: Ensure that the OhlcData -array given to SetData() is not null or empty.

Message: “Data contains empty values.”

Explanation: This is more of a warning that an actual error message. It means that the loaded OHLC-

data set contains at least one empty value, either Open, High, Low, Close or Volume field has a string

value of “”. Note that zero does not count as an empty value and will be drawn on the chart.

Copyright LightningChart Ltd 2009-2023 355

Possible fix: This message does not prevent TradingChart from working. The data will be loaded and

drawn normally, but the empty values will be skipped. It is up to user to implement a logic to handle

these cases if necessary.

Message: “Unable to use pre-defined data provider.”

Explanation: TradingChart cannot use pre-defined data provider due to connection issues.

Possible fix: Ensure that Internet connection is working properly. If the problem still occurs, contact

Lightningchart’s technical support.

Message: “Problem with connection to Arction server.”

Explanation: TradingChart cannot fetch required information from LightningChart’s server to use pre-

defined data provider.

Possible fix: This error most likely is not caused by user. Therefore, the only fix is to use another data

provider. Alternatively, contact LightningChart’s technical support to receive further information about

the current server status.

 Frequently asked questions

-How to prevent constantly hitting the ”Call limit reached error”?

-This error mostly happens when using the pre-defined MarketStack or AlphaVantage.co data provider.

LightningChart’s own rest API key is used by all users testing the TradingChart, and since the key has a

call limit (calls per minute), this error may occur during high usage. Therefore, LightningChart Ltd.

recommends users to use the pre-defined provider only for testing, and to get an own API key or use

another data provider to ensure that fetching data works at all times when building their own

applications.

-Fetching data from provider seems slow, can something be done about it?

-This depends mostly on how large the requested data set is and on the data provider itself. If using the

pre-defined AlphaVantage.co provider, this might happen as the requested data set is very large.

Currently, AlphaVantage supports only ”compact” (the last 100 data points) or ”full” (all data)

outputsize options. Therefore requesting a smaller data set could help. Furthermore, fetching data as a

json-string is often faster than as a csv -formatted string.

Note that TradingChart automatically caches the fetched data, so in many cases changing time range

doesn’t cause chart to request a new data from the provider. Thus often the first request takes longer

than the subsequent ones.

356 LightningChart® .NET User’s Manual, rev. 10.5

19. SignalGenerator component

Demo examples: Areas; Oscilloscope; SignalGenerator -> speakers; Intensity persistent layer, signal; High-

speed data, stacked axes (WinForms only)

SignalGenerator component can be used to generate real-time signal. The signal is produced as the sum

of different waveforms. Several SignalGenerator components can be linked by master-slave relationship,

to produce a synchronized, multi-channel output. SignalGenerator is very useful when developing signal

monitoring or data acquisition software with LightningChart.

Figure 19-1. Signal generator component with Sine page selected.

The waveforms are divided into following categories: Sine, Square, Triangle, Noise, Frequency sweep,

and Amplitude sweep. Respective tab pages for them can be seen in the component. In Sine page, sine

waveforms can be added. In Square and Triangle pages, square and triangle waveforms can be added

respectively. In Noise page, random noise waveforms can be generated. In Frequency and Amplitude

sweep pages, frequency and amplitude sweeps can be added. In All page, all the waveforms can be set

in a stacked view.

19.1 Sampling frequency, Output interval and Factor

SamplingFrequency tells how many signal points are generated per second. Higher sampling frequency

produces more accurate signal but comes with a cost of increased dataflow and overhead. With high

sampling frequency, signals containing high frequencies can be presented. Sampling frequency must be

more than twice the maximum signal frequency to fulfill Nyquist sampling theorem.

OutputInterval sets the preferred interval of calculated output samples, in milliseconds. For example, if

OutputInterval is set 100, a bundle of samples is received 10 times per second, after every 100 ms period.

Using lower values will give smoother real-time monitoring output. Note that OutputInterval is not

accurate and may vary with computer load. The output data stream automatically generates more

Copyright LightningChart Ltd 2009-2023 357

samples if the period has been longer than expected. The data stream will get in shape also with high

data rates and under heavy computer overhead.

Factor multiplies the output samples by selected value. For example, to generate mV signal instead of V

signal, set Factor to 1E-3.

19.2 Sine waveforms

Sine waveform is constructed with Amplitude, Offset, Frequency and DelayMs parameters. Amplitude

is the maximum voltage difference from zero level. Note that the total range is bipolar. Peak-to-peak

value will be 2 * Amplitude. Offset is DC level added to the signal. In other words, positive values shift

the signal up and negative values shift it down in the value range. Frequency tells the signal cycle count

in Hertz. One cycle per second is frequency of 1 Hertz. DelayMs delays in the signal in milliseconds.

produces signal like the following figure.

Figure 19-2. A simple sine waveform signal with settings above.

Figure 19-3. The signal of two sine waveforms with their settings above.

358 LightningChart® .NET User’s Manual, rev. 10.5

19.3 Square waveforms

Square waveform has one more parameter compared to sine waveforms, Symmetry. The range for

Symmetry is 0…1. Symmetry tells how long the signal stays in high state, related to cycle period. With a

value of 0.5 the low and high states of the signal are of equal lengths.

 Figure 19-4. One square waveform signal, with symmetry of 0.8. Settings above.

19.4 Triangle waveforms

Triangle waveform also has Symmetry parameter. It controls the way the triangles lean. 0.5 is the value

for symmetrical triangle. Values under 0.5 lean left and values over it lean right.

 Figure 19-5. One triangle waveform signal, with symmetry of 0.7.

Copyright LightningChart Ltd 2009-2023 359

19.5 Noise waveforms

Noise waveform is a randomly generated signal. Points get randomized between –Amplitude and

+Amplitude.

Figure 19-6. Noise waveform signal generating random data points between amplidutes -30 and +30.

19.6 Frequency sweeps

Frequency sine sweep runs from frequency 1 to frequency 2 in given time period, with constant

amplitude. Use FrequencyFrom to set the start frequency, FrequencyTo to set the end frequency,

Amplitude to set the constant amplitude, and DurationMs to set the duration in milliseconds.

Figure 19-7. Frequency sweep.

360 LightningChart® .NET User’s Manual, rev. 10.5

19.7 Amplitude sweeps

Amplitude sine sweep runs from amplitude 1 to amplitude 2 in given time period, with constant

frequency. Use AmplitudeFrom to set the start amplitude, AmplitudeTo to set the end amplitude,

Frequency to set the constant frequency, and DurationMs to set the duration in milliseconds.

 Figure 19-8. Amplitude sweep.

19.8 Starting and stopping

Start the generator by pressing Start button or calling Start method. Stop the generator by pressing Stop

button or calling StopRequest method. Stopped event will fire when stopping is complete.

19.9 Multi-channel generator with master-slave configuration

Several SignalGenerator components can be connected to produce a synchronized, multi-channel

output.

MasterGenerator controls the sampling frequency, start, stop and output of all generators. It produces

the first channel in the output data stream.

Slave generators are connected to master generator by assigning their MasterGenerator property.

Define the signal waveforms freely. Slave generators are started and stopped by the master generator.

They get the output data stream channel index in the connection order. Slave generators must be

connected before starting the master generator.

Copyright LightningChart Ltd 2009-2023 361

19.10 Output data stream

The output data stream consists of two-dimensional arrays, obtained via DataGenerated event handler.

Generally, the event is raised after every OutputInterval.

The event handler obtains a reference to a samples array, and a time stamp for the first samples bundle

received during this interval. The first dimension of samples array represents channels and the second

the samples for each channel. All channels have equal sample count.

Raising DataGenerated event:

m_signalGenerator.DataGenerated += m_signalGenerator_DataGenerated;

private void m_signalGenerator_DataGenerated(DataGeneratedEventArgs args)

{

 // Event code

{

To investigate the channel count of the data stream, get the length of first dimension:

channelCount = args.Samples.Length;

To get the sample count of a channel:

sampleBundleCount = args.Samples[0].Length;

The following code will demonstrate how to forward the output data directly to SampleDataSeries list

of LightningChart while updating real-time monitoring scroll position.

private void m_signalGenerator_DataGenerated(DataGeneratedEventArgs args)

{

 chart.BeginUpdate();

 int channelIndex = 0;

 int sampleBundleCount = args.Samples[0].Length;

 foreach (SampleDataSeries series in chart.ViewXY.SampleDataSeries)

 {

series.AddSamples(args.Samples[channelIndex++], false);

 }

 //Set latest scroll position x

newestX = args.FirstSampleTimeStamp + (double)(sampleBundleCount - 1) /

generatorSamplingFrequency;

 chart.ViewXY.XAxes[0].ScrollPosition = newestX;

 chart.EndUpdate();

 }

Note that with args.Samples[0] you can access the master generator’s data. args.Samples[1] gives
access to first slave generator data, args.Samples[2] to second slave etc.

362 LightningChart® .NET User’s Manual, rev. 10.5

20. SignalReader component

Demo examples: Signal reader; Waveform and spectrum; Waveform, 3D spectrogram; Audio L+R, area,

spectrogram

SignalReader component allows reading data from a signal source file and playing it back with selected

rate. SignalReader output data stream format is similar to SignalGenerator (see chapter 19.10).

SignalReader component currently supports wav and sid formats.

20.1 Key properties

FileName defines the file to be opened, for example “c:\\wavedata\\audioclip1.wav”

Factor sets the output factor. Raw signal samples are multiplied by this value.

OutputInterval is similar to SignalGenerator’s property (see chapter 19.1).

IsLooping allows file read to jump to the beginning of the file, when the end of file has been reached.

After the file has been opened, the following properties can be used to get information of the file:

ChannelCount: the channel count of the file.

SamplingFrequency: sampling frequency in Hz.

FileSize: File size in bytes.

Length: Sample count for each channel. It may not be exact for all signal file formats.

IsReaderEnabled: Status telling is the component started and reading data. If Looping is set to false and

end of file is reached, IsReaderEnabled will change to false.

20.2 Opening file quickly for playback

Call OpenFile(…) method supplied with a file name. The file name must have an extension of supported

formats. Then, call Start() method.

signalReader.OpenFile(“c:\\wavedata\\audioclip1.wav”);

signalReader.Start();

Copyright LightningChart Ltd 2009-2023 363

A playback of a PCM-formatted WAV file is then started

The playback can be stopped by calling StopRequest() method.

Figure 20-1. SignalReader reads a wav file and LightningChart SampleDataSeries draw the signal. A cursor line is used to mark
the current reading position and the X-axis scroll position.

364 LightningChart® .NET User’s Manual, rev. 10.5

21. AudioInput component

Demo examples: Audio input, waveform; Audio input, spectrogram

AudioInput component allows user to capture signal from Windows’ recording device to

System.Double values. These values can then be rendered on LightningChart, sent to an AudioOutput

component, saved to a file etc…

21.1 Properties

BitsPerSample – Gets or sets how many bits are allocated per sample. Supported values are 8 and 16. If

other value is used, 16 is used instead. It can be set when IsInputEnabled is false.

IsInputEnabled – Gets or sets the state of this instance (i.e. starts or stops it). Setting this property true

is the same as calling Start method where false is the same as calling Stop method.

IsStereo – Gets or sets whether to use two channels (stereo) or just one (mono). Can be set when

IsInputEnabled is false.

LicenseKey – Gets or sets the license key in normal or encrypted format.

RecordingDevice – Gets or sets the current recording device. Can be set when IsInputEnabled is false.

By setting this property to null, Windows' default recording device is used.

SamplesPerSecond – Gets or sets the sampling frequency. Can be set when IsInputEnabled is false.

ThreadInvoking – Gets or sets whether this instance automatically synchronizes its events to the main

UI thread, hence eliminating the need to call Control.Invoke method on caller's side.

Volume – Gets or sets the volume, ranging from 0 to 100. Can be set when IsInputEnabled is false.

21.2 Methods

GetRecordingDevices – Use this static method to get a list of available Windows recording devices.

RequestStop – Signals this AudioInput instance to stop. Stop does not occur immediately after exiting

this method. By subscribing to Stopped event, caller is notified when everything has stopped.

Start – Starts reading audio from selected recording device. Started event is triggered when internal

thread is about to start.

Copyright LightningChart Ltd 2009-2023 365

21.3 Events

DataGenerated – Occurs when a new set of audio data has been generated. Data and its first sample’s

time stamp can be read from a DataGeneratedEventArgs object that is provided as a parameter.

Started – Occurs when an audio input has been started. StartedEventArgs object that is provided as a

parameter, contains three public fields: BitsPerSample, ChannelCount and SamplesPerSecond.

Stopped – Occurs when the audio input has been stopped.

21.4 Usage (WinForms)

This chapter describes the usage of WinForms version of AudioInput class. WPF version will be handled

in chapter 21.5.

 Creation

Create a new AudioInput instance either manually in the source code or by dragging and dropping

it from Visual Studio’s toolbox on to the form, user control etc.

If there is no need to show the GUI (i.e. if using an own GUI or controlling AudioInput object from

the source code) then set Visible property false. Parent property is always recommended to be set

so that when the parent control is disposed, AudioInput instance gets disposed automatically. If

there is no parent, then Dispose method should be called when AudioInput instance is no longer

needed. If a new AudioInput instance is created via Visual Studio’s toolbox, Parent property is

automatically set.

It is recommended to set LicenseKey property so that the AudioInput instance uses an explicit

license key instead of trying to find one from Windows’ registry. If a trial version/license is used,

LicenseKey property can be left to its default value.

 Event handling

To get new samples from AudioInput instance, the user needs to subscribe at least to

DataGenerated event. When DataGenerated event is triggered, new samples and the first sample

time stamp from a DataGeneratedEventArgs object are provided as a parameter.

366 LightningChart® .NET User’s Manual, rev. 10.5

Subscribe to Started event to know when AudioInput instance has started its audio sampling task.

A StartedEventArgs object provides information about AudioInput as a parameter, for example the

number of bits per sample, is the stream audio mono or stereo, and how many samples per second

are generated.

Subscribe to Stopped event to know when AudioInput instance has stopped. The event has no

parameters and its sole purpose is to tell user when everything has been stopped.

 Configuring

Set ThreadInvoking = true to allow an AudioInput instance to synchronize its events to the main UI

thread automatically but make sure that the AudioInput instance has a valid parent control.

ThreadInvoking is set ot false by default so do not forget to call Control.Invoke method if updating

GUI in DataGenerated event handler.

Setting RecordingDevice property allows using other Windows’ recording device than the default

one. Get all available recording devices by using AudioInput’s static method GetRecordingDevices.

Volume can be controlled via Volume property. Valid values are from 0 to 100 where 0 means mute

and 100 maximum volume. The volume can also be set when AudioInput instance is enabled (i.e.

generating samples).

Set SamplesPerSecond property to use difference sampling rate than the default (44100 Hz).

Setting this property while AudioInput instance is enabled has no effect.

To use mono audio instead of stereo (default), set IsStereo to false. Setting this property while

AudioInput instance is enabled has no effect.

If 8 bits per sample is preferred rather than 16 (default), set BitsPerSample property to 8. Valid

values are 8 and 16 (default). This limitation comes from PCM wave format. Setting this property

while AudioInput instance is enabled has no effect.

 Starting

To start AudioInput instance, either set IsInputEnabled property true, or call Start method.

DataGenerated event then provides a new set of audio samples which can e.g. be rendered using

LightningChart instance.

Copyright LightningChart Ltd 2009-2023 367

 Stopping

To stop AudioInput instance, set IsInputEnabled to false, or call RequestStop method. RequestStop

method does not stop instantly. Instead, it signals AudioInput instance to stop as soon as it is

possible. Subscribe to Stopped event to know when AudioInput instance has stopped.

21.5 Usage (WPF)

This chapter describes the usage of WPF version of AudioInput class. WPF version of AudioInput works

mostly the same way as WinForms version. However, there are a couple of things that a WPF user

should be aware of.

 Creation

Create a new AudioInput instance either manually in code-behind or by dragging and dropping it

from Visual Studio’s toolbox on to a window, user control etc.

If there is no need to show GUI (i.e. if an own GUI or AudioInput object is controlled from the

source code) then use AudioInput from Arction.WPF.SignalTools namespace. This particular class is

derived from FrameworkElement and all its properties are bindable. For convenience, after having

installed LightningChart® .NET SDK, Arction.WPF.SignalTools.AudioInput can also be found from

Visual Studio’s toolbox so it can be dropped to a window, user control etc. and then moved in the

XAML code to wherever it is needed. Necessary XML namespace will be added automatically this

way.

There is also a ready-made GUI for AudioInput. It can be found in Arction.WPF.SignalTools.GUI

namespace. Visual Studio’s toolbox also has it after LightningChart® .NET SDK has been installed.

Note that this is just a GUI for Arction.WPF.SignalTools.AudioInput class but it contains an instance

of Arction.WPF.SignalTools.AudioInput class which can bew accessed Input property. In other

words, there is no need to create a new separate Arction.WPF.SignalTools.AudioInput instance.

It is recommended to set LicenseKey property so that the AudioInput instance uses an explicit

license key instead of trying to find one from Windows’ registry. When using a trial version/license,

LicenseKey property can be left to its default value.

368 LightningChart® .NET User’s Manual, rev. 10.5

22. AudioOutput component

Demo examples: SignalReader -> speakers; SignalGenerator -> speakers

AudioOutput component allows user to convert System.Double signal data into an audio stream which

is then played back through speakers or sent to Line-out connector of sound device.

22.1 Properties

Balance – Gets or sets audio playback balance. Valid values are between -100 to 100. -100 means that

audio is played only through the left speaker. 0 means that both speakers output audio. 100 means

that audio is played only through the right speaker.

BitsPerSample – Gets or sets how many bits are allocated per sample. Supported values are 8 and 16. If

any other value is used, 16 is used instead. It can be set when IsOutputEnabled is false.

IsOutputEnabled – Gets or sets the state of this instance (i.e. starts or stops it). Setting this property

true is the same as calling Start method where false is the same as calling Stop method.

IsStereo – Gets or sets whether to use two channels (stereo) or just one (mono). It can be set when

IsOutputEnabled is false.

LicenseKey – Gets or sets license key string in normal or encrypted format.

PlaybackDevice – Gets or sets the current playback device. Can be set when IsOutputEnabled is false.

By setting this property null, Windows' default playback device is used.

SamplesPerSecond – Gets or sets sampling frequency. Can be set when IsOutputEnabled is false.

Volume – Gets or sets volume (0-100). Can be set when IsOutputEnabled is false.

Copyright LightningChart Ltd 2009-2023 369

23. SpectrumCalculator component

Demo examples: Waveform and spectrum

SpectrumCalculator component allows conversion between time domain and frequency domain.

Figure 23-1. Example of source signal data (top) converted to frequency domain (bottom). Signal sampling frequency = 300
Hz, thus frequency scale is 300/2 = 150 Hz. The strong sine base line is 10 Hz (10 cycles / sec). Smaller signal of 100 Hz is added
as noise. Both spikes are found in the power spectrum.

The following public methods are available:

• CalculateForward(double[] samples, out double[] fftData) - Converts time domain signal data to

frequency domain by using FFT. Output fftData contains also negative values. Input and output data

arrays must be of equal length. The length is the resolution of the data, spreading from 0 Hz to

sampling frequency / 2 with equal frequency interval between output values.

• CalculateForward(float[] samples, out float[] fftData) – Similar to the previous method, but for

single accuracy floating point values.

370 LightningChart® .NET User’s Manual, rev. 10.5

• CalculateBackward(double[] fftData, out double[] samples) - Converts frequency domain data to

time domain. Makes signal samples from FFT data. Sample count equals input fftData length.

• CalculateBackward(float[] fftData, out float[] samples) – Similar to the previous method, but for

single accuracy floating point values.

• PowerSpectrum(double[] samples, out double[] fftData) - Calculates power spectrum of signal

data. Is the same as CalculateForward, but with absolute output values.

• PowerSpectrum(float[] samples, out float[] fftData) – Similar to the previous method, but for single

accuracy floating point values.

• PowerSpectrumOverlapped(double[] samples, int fftWindowLength, double overlapPercent, out

double[] fftData, out int processedSampleCount) - Calculates the power spectrum by shifting the

calculation windows inside source signal samples data, by overlap percent. Signal data must be

longer than given FFT window length. The output FFT data is the length of fftWindowLength which

is not necessarily the same as the length of the source data. The output data has absolute values.

Copyright LightningChart Ltd 2009-2023 371

24. Signal filters

Signal Processing class has built-in digital signal filters. They are designed to filter out unwanted

frequencies from the acquired signal data. There are two types of filters. Finite Impulse Response (FIR)

filters are amplitude stable, constant phase shift filters, which cause a constant lag in the data. The higher

the factor count (taps), the longer the delay. Infinite Impulse Response (IIR) filters are minimal-lag filters,

but introduce phase shift depending on the input frequency, and are unstable if designed poorly.

SignalProcessing namespace must be used in order to utilize signal filters. This allows creating FIRFilter

and IIRFilter objects. To filter the data, call FilterData(rawData, out filteredData) method of either of the

objects to use the respective filter.

using Arction.Wpf.SignalProcessing;

// Creating a FIR filter and filtersamples with it.

FIRFilter _firFilter = new FIRFilter();

double[] filteredSamples;

_firFilter.FilterData(rawData, out filteredSamples);

The filter classes have several methods regarding their behaviour. SetFactor() for both filters and

SetABFactors() for IIR filters can be used to modify the factors controlling for instance the data lag and

unstable output limits. GetDelay() gets the current data lag while Reset() resets the internal delay and

filtering buffers.

Figure 24-1. Raw, unfiltered signal on the top, filtered signal on the bottom.

372 LightningChart® .NET User’s Manual, rev. 10.5

Copyright LightningChart Ltd 2009-2023 373

25. Headless mode

Headless mode is a software capability of working on a device without access to Graphical User Interface

(GUI). The term "headless" is also used when software does not require the presence of peripheral

devices (like display, keyboard, mouse) or access to them. The absence of peripherals does not cause the

failure of initialization or execution processes. However, in this case the software may receive inputs and

provide output via other communication interfaces, for example via network or a serial port.

 Headless Rendering

Headless configuration allows running LightningChart in a headless/server environment. Expected

scenarios include background rendering in software applications without User Interface (UI) and

generation of a bitmap image from the chart content. The image then can be passed to the headful

system for further rendering.

Basic usage:

var chart = new LightningChart(new RenderingSettings()

{

 HeadlessMode = true

});

Headless mode can be activated by setting HeadlessMode flag to true. The property can be accessed

via chart.ChartRenderOptions (for WPF) or chart.RenderOptions (for WinForms). LightningChart

automatically detects its usage in the Windows Service type application, thus there is no need to

specify the mode.

25.1.1.1 Additional initialization options

The initialized instance of LightningChart with a missing UI and visual parent will not receive any

rendering requests, like sizing the layout or when to render a frame. Furthermore, WPF chart uses

these signals to initialize a rendering engine, when WinForms does engine initialization during the

creation time. Thus, the following operations and configurations must be applied to the chart by the

user:

- Define size using chart.Width and chart.Height properties.

- Request rendering engine initialization by calling chart.InitializeRenderingDevice(true)

(only for WPF).

- Subscribe to chart.AfterRendering event for implementing the logic of exporting the images.

The chart still reacts to property changes. The rendering of a new frame can be queried by

consecutive BeginUpdate() and EndUpdate() call, if it is needed.

374 LightningChart® .NET User’s Manual, rev. 10.5

25.1.1.2 Capturing images

The rendered frame can be exported (see chapter 14) in various ways:

• OutputStream property

• SaveToStream method

• CopyToClipboard method

• CaptureToByArray method

• SaveToFile method

In general, bitmap stream is preferred. Also, ViewXY chart supports EMF, WMF, SVG in headless

mode in SaveToStream and SaveToFile methods.

Windows Service

LightningChart instance(s)
in headless mode

Web page

Report

Initialization

Update data

New frame

Continuous

image stream Desktop /
mobile app

Figure 25-1. Diagram of example usages.

Copyright LightningChart Ltd 2009-2023 375

 Limitations and Requirements

25.1.2.1 Threads

Headless configuration allows using LightningChart for a background work without placing it inside a

visual parent and without access to the chart from the foreground thread (GUI thread). During the

creation of the LightningChart instance, the properties of a chart must be updated within the same

thread that has created the chart.

• The COM threading model, called “apartment”, must be STA (Single Thread Apartment), not

MTA (Multi Thread Apartment). For an ordinary UI application, STA is the default model,

whereas MTA state is default for Windows Services.

• All access, i.e. update, creation and disposing, must be made via that thread. UI must be

touched only from GUI thread. Thus, if there are interaction operations required, they should

be moved from chart’s thread to GUI thread. Note! LightningChart can be run on GUI thread.

• The thread must have a valid and active message queue pump. For example, run

Application.Run on the thread.

25.1.2.2 Chart Update

LightningChart uses a single buffer on rendering, thus exporting of a new image will be handled after

the exporting of the previous image is finished. The synchronous configuration

(ChartUpdateType.Sync) provides a rendering of an image straight after receiving a request to

update the properties of a chart. Sync mode should be enabled for the headless mode to enable

faster and uninterrupted performance.

25.1.2.3 Engine support

Both DirectX 9 & 11 engines work in headless mode. However, only DirectX 11 can be used in

Windows Services type applications due to the limitations of MS DirectX.

25.1.2.4 Licensing

By default, Windows Service executes in the security context of a system user account. Installation

of a trial and development license is impossible. For this reason, the service application must

contain a valid Deployment Key or be running with credentials of a normal user with an active license

(trial / development).

376 LightningChart® .NET User’s Manual, rev. 10.5

 Example solution

LightningChart SDK comes with an example Visual Studio solution (DemoService.sln) containing:

• Service

• Console application

• Client application for WPF

DemoService.sln can be found in C:\ProgramData\Arction\LightningChart .NET SDK

v.10\DemoService folder.

When starting up the WPF client, it shows a frame container in the middle of the window.

 Figure 25-2. WPF client app. After Start, Connect and Generate Data, it shows continuously updating image stream.

Copyright LightningChart Ltd 2009-2023 377

Figure 25-3. Headless demo service – client internal operation of messages with named pipes and background thread
illustrated.

378 LightningChart® .NET User’s Manual, rev. 10.5

26. Using Windows Forms chart in WPF application

LightningChart has 3 WPF API’s available. Consider using WinForms chart API in WPF application only

in special cases.

26.1 How about using LightningChart Windows Forms controls in WPF?

In WPF, Windows Forms components can be used by adding

Arction.WinForms.Charting.LightningChart.dll and Arction.WinForms.SignalProcessing.SignalTools.dll

as reference to the project, and creating them by code. LightningChart control and most of other

controls have a built-in UI. Use WindowsFormsHost as parent container to these. These controls can be

used also without UI, with their methods and properties.

26.2 Should I use Arction.WinForms.LightningChart in WPF?

Using WPF chart assemblies is recommended over WinForms chart in WPF applications, because it

doesn’t need the WindowsFormsHost control, and thus does not have the generic “airspace” problem of

WindowsFormsHost control. Another advantage is that the WPF chart can have transparent background

and the charts can be placed one over another.

Using WindowsFormsHost control with WinForms chart control can be considered to be used when the

absolute maximum performance is required. WindowsFormsHost + WinForms chart rendering is slightly

faster.

If the user chooses to use the WinForms chart in WPF application, it must be placed inside

WindowsFormsHost control. Add a WindowsFormsHost control (found in the Visual Studio WPF

Toolbox) into the WPF form.

Copyright LightningChart Ltd 2009-2023 379

Figure 26-1. WPF application in designer. WindowsFormsHost control keeps the LightningChart object inside when the
application is executed.

Create a LightningChart object and place it inside the WinFormsHost object in code. Open the form

xaml.cs file and create the chart in the form constructor:

public WindowMain()

{

 InitializeComponent();

 CreateChart();

}

private LightningChart m_chart = null;

void CreateChart()

{

m_chart = new LightningChart();

 //Set the chart object as child to the WindowsFormsHost control

 windowsFormsHost1.Child = m_chart;

}

380 LightningChart® .NET User’s Manual, rev. 10.5

Figure 26-2. WinForms chart in a WPF application.

Copyright LightningChart Ltd 2009-2023 381

27. Using LightningChart in C++ applications

LightningChart is a .NET library which can be most fluently used with C# and VB.NET language.

However, it is possible to use LightningChart in C++ Win32 applications as well, including MFC

applications. The application using LightningChart must be compiled with Common Language Runtime

Support (/clr) option. When creating a Windows Form Project using C++, refer to the detailed step by

step tutorial below.

27.1 Install required C++/CLR packages

Make sure your Visual Studio have installed C++ package with C++/CLR. For example, run Visual Studio

(2017) Installer, and select update/modify button. From Individual components select C++/CLI support.

From Workloads select Desktop development with C++.

Figure 27-1. Visual Studio Installer selections for C++ project.

382 LightningChart® .NET User’s Manual, rev. 10.5

27.2 Setting Visual Studio project

Open Visual Studio and create a new project. If all the required packages and components described

above are installed, the following selection is available when creating new project (Templates -> Visual

C++ -> CLR -> CLR Empty project).

Figure 27-2. Windows Forms C++ project template.

Right click the created project and choose Properties option. Modify Configuration Properties -> Linker

-> System -> SubSystem and Linker -> Advanced -> Entry point as show in the figure 26-3.

Copyright LightningChart Ltd 2009-2023 383

Figure 27-3. C++ project property pages.

Add Windows Form Item to the project: right click the project and choose Add -> New Item... Select

Windows Form as shown in the figure 26-4. It is possible to get an error message: The data necessary to

complete this operation is not yet available. (Exception from HRESULT: 0x8000000A). This can be ignored, just

close it and proceed to the next step.

Figure 27-4. Add new Windows Forms item in C++ project.

384 LightningChart® .NET User’s Manual, rev. 10.5

Add the following code to the created form (in this example MyForm.cpp), save it and close the Visual

Studio.

#include "MyForm.h"

using namespace System;
using namespace System::Windows::Forms;

[STAThreadAttribute]
void Main(array<String^>^ args) {
 Application::EnableVisualStyles();
 Application::SetCompatibleTextRenderingDefault(false);
 Project1::MyForm form;
 Application::Run(%form);

}

The project is ready to be built for the first time. Reopen the project and select Build -> Rebuild

Solution. When the project is running, an empty Windows Form should be seen.

27.3 Creating LightningChart application in C++ project

Components can now be added to the form by editing MyForm.h file. Below is a simple example how

to create a chart with PointLineSeries in it. Include LightningChart’s WinForms DLL in references list and

add relevant namespaces in MyForm.h code file.

Figure 27-5. Include Arction.WinForms.Charting.LightningChart.dll in references list and add relevant namespaces in the
project.

Copyright LightningChart Ltd 2009-2023 385

Declare a ‘chart’ variable and set its properties. Below is an example of a chart creation method.

protected:
LightningChart ^ _chart;

void CreateChart()
{
 _chart = gcnew LightningChart();

 //Disable repaints for every property change
 _chart->BeginUpdate();

 //Set parent window by window handle
 _chart->Parent = this;

 //Fill the form area
 _chart->Dock = DockStyle::Fill;

 _chart->ActiveView = ActiveView::ViewXY;

 // Configure x-axis.
 AxisX^ axisX = _chart->ViewXY->XAxes[0];
 axisX->SetRange(0, 20);
 axisX->ScrollMode = XAxisScrollMode::None;
 axisX->ValueType = AxisValueType::Number;

 // Configure y-axis.
 AxisY^ axisY = _chart->ViewXY->YAxes[0];
 axisY->SetRange(0, 100);

 PointLineSeries^ pls1 = gcnew PointLineSeries(_chart->ViewXY, axisX, axisY);
 pls1->LineStyle->Color = Color::Yellow;
 pls1->Title->Text = "New Title";
 pls1->PointsVisible = true;
 pls1->LineVisible = true;
 _chart->ViewXY->PointLineSeries->Add(pls1);

 // Generate random data.
 Random rand;
 int pointCount = 21;

 array<SeriesPoint> ^ points = gcnew array<SeriesPoint>(pointCount);
 for (int point = 0; point < pointCount; point++)
 {
 points[point].X = (double)point;
 points[point].Y = 100.0 * rand.NextDouble();
 }

 pls1->Points = points;

 // Allow chart rendering.
 _chart->EndUpdate();
}

The resulting application when compiled and executed:

386 LightningChart® .NET User’s Manual, rev. 10.5

Figure 27-6. Example application executed.

Copyright LightningChart Ltd 2009-2023 387

28. Dispose pattern

28.1 Chart disposing

When a chart has been created in code, and is no longer needed, chart.Dispose() should be called. It

frees the chart and all its objects, such as series, markers and palette steps from the memory.

28.2 Disposing objects

If objects are created on the fly, and then the memory used by them needs to be freed before exiting the

application or disposing the whole chart with chart.Dispose(), remove the object from the collection it

has been added to, and then call Dispose() for the object.

For example, disposing a series from chart.ViewXY.PointLineSeries collection:

//Do cleanup... Remove and dispose 3 series

 _chart.BeginUpdate();

 List<PointLineSeries> listSeriesToBeRemoved = new List<PointLineSeries>();
 listSeriesToBeRemoved.Add(_chart.ViewXY.PointLineSeries[1]);
 listSeriesToBeRemoved.Add(_chart.ViewXY.PointLineSeries[3]);
 listSeriesToBeRemoved.Add(_chart.ViewXY.PointLineSeries[4]);

 foreach (PointLineSeries pls in listSeriesToBeRemoved)
 {
 _chart.ViewXY.PointLineSeries.Remove(pls);
 pls.Dispose();
 }

 _chart.EndUpdate();

When LightingChart's objects are no longer needed, it is a good practice to dispose them to prevent

memory leaking.

LightningChart’s collections also have specific methods for correctly disposing unused objects. Instead of

calling generic list.Clear() method (e.g. ViewXY.SampleDataSeries.Clear()), RemoveAndDispose can be

used. For example, to remove all SampleDataSeries:

while (_chart.ViewXY.SampleDataSeries.Count > 0)
{
 _chart.ViewXY.SampleDataSeries.RemoveAndDispose<SampleDataSeries>(0);
}

388 LightningChart® .NET User’s Manual, rev. 10.5

29. Object model notes

29.1 Sharing objects between other objects

LightningChart object model is tree-based. Every class has its parent object and a list of child objects. This

tree-model allows child object to notify the parent object of its changes, allowing the parent to respond

to it. Respectively, the parent notifies its parent and so on until the root node, LightningChart itself, is

reached, which then knows how to refresh accordingly.

Chart takes ownership of all the objects given to it and will dispose the objects when it no longer

needs them. This includes situations where a new object replacing an old one is given to chart, and the

parent of the object is disposed. User must be aware of this, as otherwise it is possible to end up using

disposed objects.

If an object is shared between another .NET component and LightningChart, and LightningChart

disposes the object, the .NET component is left with a disposed object. LightningChart cannot detect

parent sharing between LightningChart and other components.

Sharing objects between other objects in the same chart, or other chart instances, is not allowed.

Example 1 of wrong usage:

AnnotationXY annotation1 = new AnnotationXY();

chart.ViewXY.Annotations.Add(annotation1);

AnnotationXY annotation2 = new AnnotationXY();

annotation2.Fill = annotation1.Fill;

chart.ViewXY.Annotations.Add(annotation2);

Issue: The same Fill object cannot be shared between multiple objects.

Correct way: Only copy properties if they are of ValueType (e.g. Integer, Double, Color)

Copyright LightningChart Ltd 2009-2023 389

Example 2 of wrong usage:

SeriesEventMarker marker = new SeriesEventMarker();

chart.ViewXY.PointLineSeries[0].SeriesEventMarkers.Add(marker);

chart.ViewXY.PointLineSeries[1].SeriesEventMarkers.Add(marker);

Issue: The same object shouldn't be added to a collection of multiple collections.

Correct way: Create several markers, one for each series.

Remember to subscribe to ChartMessage event handler. In most cases it reports errors of invalid object

sharing cases (see chapter 16).

390 LightningChart® .NET User’s Manual, rev. 10.5

30. Deployment / distribution of LightningChart assemblies

30.1 Referenced assemblies

Deliver LightningChart .dll -files with the executable folder, next to the executable folder, with Global

assembly cache, or with another folder where .NET assembly resolving system can find them.

LightningChart also supports ClickOnce deployment.

WinForms:

• Arction.WinForms.Charting.LightningChart.dll

• Arction.Licensing.dll

• Arction.DirectX.dll

• Arction.RenderingDefinitions.dll

• Arction.RenderingEngine.dll

• Arction.RenderingEngine9.dll

• Arction.RenderingEngine11.dll

• Arction.DirectXInit.dll

• Arction.DirectXFiles.dll

If using SignalTools

• Arction.WinForms.SignalProcessing.SignalTools.dll

• Arction.MathCore.dll

WPF:

• Arction.Wpf.Charting.LightningChart.dll (for Non-bindable WPF chart)

• Arction.Wpf.ChartingMVVM.LightningChart.dll (for Bindable WPF chart)

• Arction.Licensing.dll

• Arction.DirectX.dll

• Arction.RenderingDefinitions.dll

• Arction.RenderingEngine.dll

• Arction.RenderingEngine9.dll

• Arction.RenderingEngine11.dll

• Arction.DirectXInit.dll

• Arction.DirectXFiles.dll

If using SignalTools

• Arction.Wpf.SignalProcessing.SignalTools.dll

• Arction.MathCore.dll

Copyright LightningChart Ltd 2009-2023 391

UWP:

• Arction.Uwp.ChartingMVVM.LightningChart.dll

• Arction.Uwp.RenderingDefinitions.dll

• Arction.Uwp.RenderingEngine.dll

• Arction.Uwp.RenderingEngineBase.dll

• Arction.Uwp.Licensing.dll

• SharpDX.D3DCompiler.dll

• SharpDX.Direct2D1.dll

• SharpDX.Direct3D11.dll

• SharpDX.dll

• SharpDX.DXGI.dll

• SharpDX.Mathematics.dll

• UwpAttributes.dll

30.2 License key

Remember to use static SetDeploymentKey method for all components. Otherwise the chart enters in

trial mode and works only for 30 days, with a trial nag on it. For making a DeploymentKey and detailed

license keys management, see chapter 4.

30.3 Obfuscating application code

It is mandatory to obfuscate the application code, so that LightningChart license keys are not visible to

.NET disassembler tools. Leaking license keys may lead into license termination, legal actions and claim

of damage.

30.4 Obfuscating LightningChart code

A LightningChart source code subscriber gets access to the source code of LightningChart libraries. It is

mandatory to obfuscate the assemblies build from LightningChart source code, to prevent

LightningChart Ltd’s intellectual property rights and code from leaking. Distributing unobfuscated

LightningChart libraries is a violation of EULA, and may lead into license termination, legal actions and

claim of damage.

392 LightningChart® .NET User’s Manual, rev. 10.5

30.5 XML files of LightningChart assemblies

Deployment of these XML files is forbidden.

• Arction.WinForms.Charting.LightningChart.xml

• Arction.Wpf.BindableCharting.LightningChart.xml

• Arction.Wpf.Charting.LightningChart.xml

• Arction.Wpf.ChartingMVVM.LightningChart.xml

• Arction.Wpf.SignalProcessing.SignalTools.xml

• Arction.WinForms.SignalProcessing.SignalTools.xml

The files provided by LightningChart Ltd. are only for helping with the application development. They

are used mainly to show code parameters and property tips. When rebuilding LightningChart

assemblies from source code, ensure the XML files mentioned above are not deployed. Distributing

them is strictly forbidden, as they will reveal too much info for .NET disassembler and reverse-

engineering applications.

Copyright LightningChart Ltd 2009-2023 393

31. Troubleshooting

31.1 Updating from older version

LightningChart components API may have been changed from an older version, after which the project

may not load or use the new version automatically. These instructions show how to set the new version

assemblies as a reference to a project and how to fix the properties that were unable to de-serialize in

the Visual Studio form editor.

In order to update chart, the reference to the old version has to be removed and a reference to the new

version added. In some cases *.Designer.cs and *.resx files may need to be fixed as they may contain

properties, which are binary incompatible.

Removing the old reference from project References

1. Go to Solution Explorer.

2. Open References folder.

3. Select LightningChart assemblies and remove them by pressing Delete button or right-click and select

Remove.

Adding a reference to a new version

1. Go to Solution Explorer.

2. Open References folder.

3. Add reference to new chart. Right-click on References folder. Select Add Reference... and select the

new LightningChart DLL file.

As the API may have been changed, the source code on changed properties may have to be fixed.

If a chart is totally incompatible (i.e. Visual Studio can't load UI on form editor), LightningChart property

setters have to be removed from *.Designer.cs and *.resx files.

Removing property setters from *.Designer.cs file

1. Open *.Designer.cs file in text editor (use other editor than Visual Studio if possible).

2. Locate and delete rows containing setters for LightningChart. For example:

this.m_chart.Background =

((Arction.LightningChart.Fill)(resources.GetObject("m_chart.Background")));

There is no need to remove inherited properties, like Location and Size. Remove properties, which are

read from resource by a method like above "NN = ((...)(resources.GetObject("...")));".

394 LightningChart® .NET User’s Manual, rev. 10.5

Removing serialized items from *.resx file

1. Open *.resx file in text editor.

2. Find xml tags containing LightningChart objects (they are identified with chart member name. e.g.

"m_chart" or "LightningChart1").

3. Remove the lines including <data> tag to the end of xml object (</data> tag).

E.g. if chart background is serialized as the following xml object, all the following lines should be

removed from the *.resx file:

<data name="m_chart.Background" mimetype="application/x-

microsoft.net.object.binary.base64">

<value>

AAEAAAD/////AQAAAAAAAAAMAgAAAGRBcmN0aW9uLkxpZ2h0bmluZ0NoYXJ0VWx0aW1hd

GUsIFZlcnNp

b249NC42LjEuMjAwMSwgQ3VsdHVyZT1uZXV0cmFsLCBQdWJsaWNLZXlUb2tlbj03MmY1N

WZiZDY5MDFm

... lots of encoded stuff ...

 YXlvdXQBAAAAB3ZhbHVlX18ACAIAAAAAAAAACw==

</value>

</data>

Note that some objects may be very large, e.g. title row count may be approximately 200 lines while

views are usually much larger (View3D has about 2000 lines).

In case of having several charts, all their serialized properties need to be removed. Editor search is

a handy tool to find the chart objects.

After the objects are removed from *.resx file and related setters from *.Designer.cs file, it should

be possible to open the project successfully in Visual Studio form editor.

31.2 Web support

See https://lightningchart.com/support-services/ for support options.

Discussion forums are available at https://lightningchart.com/forum/

31.3 Running in Virtual Machine platforms

LightningChart comes with DirectX10/11 WARP rendering for systems that don't give access to graphics

hardware. Since WARP rendering takes place in CPU, performance reduction is to be expected when

compared to hardware rendering. This needs an operating system with support for DirectX11.

For systems that don't support DirectX11, LightningChart falls back to DirectX9 Reference Rasterizer

mode. Performance is very poor, only small fraction of WARP's performance. For automatic fallback to

WARP and DirectX9, keep the RenderDevice set to Auto, AutoPreferD9 or AutoPreferD11 (chapter 5.11).

https://lightningchart.com/support-services/
https://lightningchart.com/forum/

Copyright LightningChart Ltd 2009-2023 395

32. Credits

32.1 Intel Math Kernel library

LightningChart® .NET SDK uses Intel Math Kernel Library in some parts, for example Fast Fourier

Transform methods. LightningChart assemblies contain some native DLL files built from this library.

LightningChart Ltd. is licensed to use Intel Math Kernel Library.

32.2 Open-source projects

We present thanks to the following open-source projects and material providers:

DirectX library for .NET

LightningChart uses SharpDX-derived DirectX .NET DLLs with LightningChart-made extensions,

http://www.sharpdx.org/

Map sources

LightningChart® .NET maps have been imported from the map providers as follows:

World, North America, Europe: Natural Earth, http://www.naturalearthdata.com/

Australia: Australian Bureau of Statistics, http://www.abs.gov.au/

Roads of USA: National Atlas of the United States, http://www.nationalatlas.gov

Scalable Vector Graphics output

 LightningChart SVG export is using partially SvgNet project code by RiskCare Ltd.

 Polynomial regression

Polynomial regression calculation code is partially based on Math.Net library,

http://www.mathdotnet.com/

The modified source code parts are available per request free-of-charge from LightningChart Support

(support@lightningchart.com).

For copyrights notices of open-source projects, see LightningChart .NET Readme.txt in LightningChart

SDK install folder.

http://www.sharpdx.org/
http://www.naturalearthdata.com/
http://www.abs.gov.au/
http://www.nationalatlas.gov/
http://www.mathdotnet.com/
mailto:support@lightningchart.com

