M A LightningChart®

User’s Manual

LightningChart® .NET User’s Manual, rev. 10.5

About this document

This document is a brief User’s Manual, reference of LightningChart® .NET. Only essential key features are
explained. Hundreds of classes, properties or methods are not described in this document. Run the provided
Interactive Examples demo application to get a quick preview of some LightningChart features. The source
code of included demo examples helps understand how to use LightningChart components in code.

All code examples in this document are written in C# language. Also, all the demo examples can be
extracted from Interactive Examples as a Visual Studio project to preview their source code.

User Manuals in other languages are available in LightningChart .NET Resources web page
(https://lightningchart.com/lightningchart-net-resources/).

Also remember, don’t hesitate to contact support (support@lightningchart.com) if you have any
questions!

Applies to LightningChart .NET, v.10.5

LightningChart

Copyright LightningChart Ltd 2009-2023. All rights reserved.

LightningChart is registered trademark by LightningChart Ltd.

https://lightningchart.com

Copyright LightningChart Ltd 2009-2023 3

https://lightningchart.com/lightningchart-net-resources/
mailto:support@lightningchart.com
http://www.lightningchart.com/

Contents

L OVRIVIEW ettt a et e e s a e s ara s 19
1.1 Chart EAITIONS ..ottt b e s bttt st e et e e b e e sbeesaee st e sabe e b e e beenrees 19
1.2 COMPONENTES e s 20
13 N T T oI [0l L PP PP P PP PPPPPPPPPPPPPRPRS 22

2. INSTANIATION .t b e e st b e bt e bt e she e san e e b e beereeenees 23
2.1 N =T T =0 UL =] 0 =T 23
2.2 V1 ol o Yo = 1 o1 11 A PSR 23
2.3 RUN The SELUP WIZATU . .eiii ettt ettt ee e e s e e e e sabee e e esabeeeeesabeeeseares 23
2.4 Adding LightningChart components manually to Visual Studio ToolboXcccccvviiviieeriviiierennnen, 24
2.5 Configuring Visual Studio 2010-2022 help manually........cccccvveiieiiiee e 24

251 ViSUL STUAIO 2000 ...ttt ettt sttt b e b e be e sae e st et eenbeesaeesaeesareeane 25
25.2 Visual STUdio 2012-2022........eeiiieieeiteete ettt ettt sttt st et b e b e e s 25
2.6 Code parameters and tips by Visual Studio INtelliSENSEueveeeeieeiiiiiieeeiee e, 26
2.7 Selecting target FrameEWOIKoiii e s 27

N B L= =T | = PSPPSR P PP OPPPROPPPT 28
3.1 OpeNning INteractive EXamMPIES........uei ittt e e e e bee e e e e bte e e s ebeeeeseareaaeeeans 29
3.2 USEIr data STAtISTICS veeuveeeiieeiiie ittt ettt ettt e sab e st e s bt e e sabe e e sabeesabeesbbeesabeesnnes 31

4. LICENSE MANAGEMENT...c.ueeiiiiiieeeeeiiitittee et e e s e ssrt e et eeeessasttbeaaeeeesssaassssaeaeeeessssssssateaeesssssansssaeeeesssnsassnereeees 32
4.1 PV o 1o [Tol=T o 1Y PSPPSR 32
4.2 REMOVING @ lICENSE ...ttt e e ettt e e e e e bt e e e e e bee e e e abaeeeeenbaeeeeenbeeeeeenseeeeennsens 34
4.3 UPAAtiNG @ lICENSE ..ttt e et e e ettt e e e ettt e e e e e bee e e s abeeeeenabaeeeeenbaeeeeensenesanrens 35
4.4 EXtracting DeploymMENT KEY ...ccciciiiei ittt ettt et e e e re e e e e e e e e re e e e earees 36
4.5 Applying Deployment Key in an application.........cooiiiiiiiciieecciiee ettt 36
4.6 Running with Deployment Key on development COMPULEr.......c.eeeveiiiiiiiiei e 39
4.7 RUNNING WIth AEOUBEET ... ettt e et e e e et e e e e e beee e e nres 39
4.8 BT 011 g oY IS USSR 39
4.9 [ToF A g [ol =T o YT RP PP 39

5. LightningChart COMPONENT.......coiiiiiie i e e e ebte e e s sbte e e e sbteeeesasteeeessteeessnssneasanns 40
5.1 Using LightningChart® NET [IDrariesciicuiiii ittt ettt svte e e svee e e svee e e 40
5.2 Creating Chart iN COUE ..o et e e et e e e et e e e e e bt e e e e ebteeeesateeasestaeeeanes 41
53 Adding from toolbox into Windows FOrms Project.........cccueeeeccieieeeiiiee ettt et 42

531 [CoT o 1] o A [T PP PP PP PPPPPPPPPPPPPPPRE 42
5.3.2 EVENT NANAIEIS .. e st e s r e e neeas 42
533 Best practices conserning version UPAatesccveeeveiieeeiriieeesiiiee e eiiee e ssiee e ssieee s ssieeesssvees 42

5.4 Adding from toolboX iNtO WPF PrOJECEuveiiiieeeeceee ettt ettt e e re e e e 43
541 o o 01T o 1= PPNt 43

4 LightningChart® .NET User’s Manual, rev. 10.5

5.4.2 Y Al =Y e 1L P PRRPPRRRTRTRPPRRNt 43

5.5 Adding iNtO BIEN WPFE PrOJECE ..vveiiiiiiiieciiee ettt et e e s e e s e e s e e e s s abee e s ennes 44
551 Best practices conserning Version UPAAtesc.cevcueiiriierieeenieenieeenreesiee e sveeesaeessveeeneeees 45
5.5.2 Preventing blurring of the Chart ... 45

5.6 Creating UWP PrOJECES .ottt ettt e ettt e e e e s e st r e e e e e e s s sasbeaeeeeeessasanneaeeeeeseas 46
5.6.1 Creating @ UWP application........ciiiiiiiiiciiic ettt esanaeee s 46
5.6.2 O AT 0T o] {1 g o 1 1Y - PSP 49

5.7 (0] o) [=Tot d g g Yo [PP SPTPRRN 50
5.7.1 Differences between Windows forms, WPF and UWP...........ccoooiiiiiiiiiie e, 51

5.8 LIBNENINGCRAIT VIEWS ...viiii ittt st e s e bee e e st e e e s sabee e e e sabee e e e s abeeesesaseeeeennsees 51

5.9 View and zooming area definitioNscccuieiiiiiiiiiiie e 51

5.10 Setting backgroUNnd fill..........cooouiiiieieeeee e e e e e e e e e are e e e e arees 53
5.10.1 Setting transparent back@roUNd...........coouiiiiiiiiiiiiie e s e 55

5.11 Configuring appearance / performance SETHINGSccceeoveeeiiieeiiiceee ettt et 56

LT A 0 1 I =T o Vo |11 Y-S USSP 59
LT 0 R T oY =1 o T=T o] - 1Y RPN 60

LT T N o 1 1 1Y [V= ST 60
5.13.1 EN@bling ANti-AlasiNgueeiiecuiiieiciieee ettt e e e e e st e e e st e e e s e ae e e e srre e e e eeataeeeean 60
5.13.2 DiIreCtXLL ANti-AlIaSiNg .ueeecieeecieiiiiieiiee ettt eeee et ste e e stee s te e st e e s e e e b e e sbe e ebe e e nateeenreeesareeennes 61

6. VWY ittt e e r e e e et e e s e b e e e e s e be e e e s s ree e e s seneneeenan 62

6.1 F NI =) e UL d o] o] 1 oY 3RS 65
6.1.1 Setting hoW aXes @re PlaCEAciiviiiii e e e e e e are e e e narraee s 65
6.1.1.1 X-axis autOMatiC PlACEMENTcciiiiee ettt e e e et e e e e ebee e e e ebeeeeeereeeaeenns 65
6.1.1.2 Y-axis automatiC PlaCeMENTcccuviiii et e et e e e e e e eta e e e e erreeaeeans 67
6.1.2 Graph segments and Y axes placement in themcccccovvi e 70
T At R I YT Y o PRSPPI 70
6.1.2.2 SEACKEM ..o e e s s st nnees 70
T 0 T Y=Y = 0 =Y o =Y o P UURPRE 71
6.1.3 F N I =4 1o I {0 L PP PP TSP 72
6.1.4 Limit Y-value t0 Stack SEEMENt.........uiiiiieee e e e e e 74
6.1.5 Other AXiSLayOUL OPLIONS ..eciiiiiiieicciiee e e e st e e et e e e e satr e e e esataeeesntaeeesansraeen 75

6.2 B = =TT PSP 75
6.2.1 Y g1 ol T o] e o =] o =PRI 76
6.2.2 Tick value 1abels formatting.......cccveeiieiiii e e 76
6.2.3 [V 1T 1Y o1 TSRS 77

Copyright LightningChart Ltd 2009-2023 5

6.2.4 e TaY == u A | o ¥ = PP PP PP PPPPRPPPRPPPPPPPRE 78
6.2.5 U o] g1 o P-4 o= o T= (=TSP UPPPTPURPR 78
6.2.6 D1V (o o [PPSO P SRR 78
6.2.7 LG o o PSR 79
6.2.8 CUSTOM TICKS ettt sttt ettt e bt e s bt e sae e sab e sab e e b e beesneesnees 80
6.2.9 Event based axis value formatting........cccevcieiiieiiiii it s 81
6.2.10 ReVErSed X @nd Y @XIS «.ueeeieeerireeiiiiieniie ettt estee ettt siteesbee e st e sbteesateesbee e sabe e s bt e s nreesabeeesareeeanes 82
0 R oY <= T 1 0 | Lol D= RPN 82
6.2.11.1 Exponential presentation for 10 Baseoccuviiiiciiiiinciiee e 83
6.2.11.2 T =Y I oY =T 1 o] o o [P ST 84
6.2.12 Converting between axis values and screen coordinatescccccueeeeecieeeeecieeeeecieeeeecreee e 84
B.2.13 IMIINISCAIE ettt sttt ettt et be e she e st sab e e bt e b e beenneas 85
6.2.14 AXiS €nd POINt [ADEISviiiieeie e e raeeeeaes 85
6.3 K XIS ettt ettt ettt ettt et e e et e e et e e e e e e et e e et et e e e n e et e e e n e et e e e n b e et e e R b et e e e nnae e e e nrreeeeannreeesannneeens 86
6.3.1 Real-time monitoring SCrolliNGooi i e e 86
B.3. 1.1 NN ettt e e et e e st e e e e s e ea e e e e e e s s nnnn 87
Lo N A (= o] 11 ¥ = OO PP PRSP PPPPPPNt 87
LT T 0 T Yol o 1|11 V-SSR 87
LT 0t T VY= Y o 1 Y- 89
LT 00 R T I == =Y o V- 90
6.3.2 SCAIE BIrEAKS ...t e 91
6.4 Y T =410 PP OPP PP PPPPRRN 93
6.5 VIEWXY SEIIES, BENEIAL . ciiiiiiiiiiiiiei ettt e st e e e st e e e s ba e e e s abeeeessbaeeeesbeeeeensees 95
6.5.1 Automatic series title PlaCemMENToocvii e 95
6.6 POINTLINESEIIES ...ttt et s e s s e s s e e s s are e e s e nrees 95
6.6.1 TR LY =SSR 96
6.6.2 o 11N £y AV 1SR 96
6.6.3 Coloring points iINAIVIAUAIIYoeeiiiiieeceee e e e e e s raareee s 97
6.6.4 Yo o g =a o Yo] o | Ay RSP 97
6.6.5 Adding points, alterNative Waycccueeiiiciieee e e 98
6.7 LI LINES RIS ..ttt e s s e s e e s e nre e e s e nres 98
6.8 Y001 o (=] DL = I =] o (=SSR 99
6.8.1 D <L (=T] oo PP PP 100
6.8.2 FaYe [o [T g = e To) £ TP TSP PP PRUROPPTOP 100

LightningChart® .NET User’s Manual, rev. 10.5

6.9 SAMPIEDALABIOCKSETIESvveeieiiieeeeee ettt e et e e e st e e e e et e e e e e et e e e e e ataeeeenreeeeenanees 100

6.10 DiGItalLINESEIIES .eeeieieeee ettt ettt e e e et e e e e et e e e e e ta e e e e e bt e e e e ebee e e eaabteeeeabreeeeanrreeeennrees 102
6.11 FreeformPOINTLINESEIIES ...co.vi ittt ettt st et b e b e s bee st e e eeenreens 103
6.12 LiteFreefOrmMLINESEIIES. .. .eieiie ettt ettt et st e s b e e st e s be e e ar e e sreeesareeas 104
6.13 Which line series should be USEA?cooiiiiii e 105
6.14 Advanced line coloring Of iN@ SEIIESccccuiii it e e e e e erae e e 107
6.14.1 Y-value based coloring of line and fill with value-range palettec.ccccceeeiivieeiccieeeeccinennn, 107
6.14.2 Custom shaping and coloring with CustomLinePointColoringAndShaping event................. 108
6.15 POlYNOMIAI FEEIESSION ceiiieeieee ittt ettt ettt et e e et e e e et e e e e sbee e e s st eeeeesabeeeeesnbeeeeesnseeesennsees 109
Lo T o 7= o B oL AT T 1TSS 109
6.16.1 Fill, lin€ and POINT STYIES ciuviiieiie ittt re e ettt e e e eaee e ebe e e saneeens 110
B.16.2 LIMIES. e ueiiiieee ettt ettt st et e b e bt sh et st e e bt e be e beenbeeshteeaeeeteen 110
6.16.3 Coloring by value-range Paletteccceieciiiiee ettt e 111
o ST A Yo [o [oY= - - F USRI 112
Lo A AN =T YT =T O OO SPPPUPP 113
3 0 R Yo [o [Y= = - F USRI 113
Lo R = - | oY= =L O U PP PP PP 114
B.19 SEOCKSEIIES. . eeutieiiieeeite ettt ettt ettt ettt et e st e ettt e s bt e e bbe e s abeesabeeesabeesabeesabeeesabeesbeeenteesbeeennbeanns 117
6.19.1 Setting data 10 STOCKSEIIES ..c..viiiciierieeeee ettt ste e ebe e e st e e ste e ebaeeebeeennaeenns 118
6.19.2 Setting X axis 10 date diSPlayccceerieiiiiiecee et e e 119
6.19.3 Custom formatting of aPPEAraNCE ...ccccvviii i 119
6.19.4 ApPlYing SCAlE Breaksuvei i e aae s 120
Lo O I 2o 1Y/ = L] N =TSSP 120
6.20.1 Setting data t0 @ POIYEON. ..o it e e et e e et e e e araee s 120
6.20.2 Enabling complex / intersecting fillS.........cceoveiiiiiiiii ettt 121
6.21 LINECOIECHIONS. .. ettt sttt et e s b e s bt e sat e st et e e be e bt e s beesaeeeateenteens 121
6.21.1 Setting data to a LINECOIECHION........ciiiciiiie et re e 122
6.21.2 Solving individUal SEEMENTSccicuiiiieciiie et e e e et ae e e e bae e e eentaeeeeaaaeeeas 122
(oI 11 0= 0 1 1Y G To KT o 1= PSSR 123
6.22.1 Setting intensity grid datacoeeei i e e e e ennes 125
6.22.2 Creating intensity grid data from bitmap fileccueeeriiiiici e, 126
o e B 1| I Y 1SRRIt 127
o R Y- o Vo L= o =g I o1 (=] 1 1 = o JO USRI 127
6.22.5 ValUBRANGEPAIETLE ..eeeeeeiiie et et e et e e et ae e e e sata e e e e abeeeenaaraeen 128

Copyright LightningChart Ltd 2009-2023 7

LT Y VT =] = 1 01T 129

6.22.7 CONTOUN TINES ettt ettt e st e e st e st e e sat e e sabe e e sabeesabeeeaneeesabeeesnneens 129
6.22.8 CoONLOUr lINE IADEIS....coeiiieeie et s bt e e s b e e sane e 131
6.23 INtENSIYIMESNSEIIES ..oveiiiiiiie ettt et e e e e e e st ee e e st e e e e bee e e esbeeeeesnbeeeeenarees 131
6.23.1 Setting intensity mesh data, when geometry changesccccccvvciveeiiviieieiccieec e 133
6.23.2 Setting intensity mesh data, when geometry does not change.......ccccccvviviieieiccieee e, 133
6.23.2.1 Creating the series and its GEOMELIY.....c.uiii i e e aree e 134
6.23.2.2 Updating the values periodiCallyc.ueeeeciieiicciieeeece e e 134
B.24 BANGS .ttt ettt b e s b et sh ettt e et e b e e e bt e eae e e ne e bt e bt e bt e nreeeneeereereens 134
6.25 CONSTANT IINES ..ottt ettt et e s bt e st st st e b e b e e sbeesaeesneeenneens 135
6.26 ANNOTATIONS oot e e 136
6.26.1 Controlling target and [0CatION.........cii it ae e 137
6.26.2 Using mouse t0 MOVE, rotate and reSIZE......cuviiiecuiiiiieiiiie ettt ecree et e e e e e saaeee s 138
6.26.3 AdJUSTING QPPEAIANCE . eiiitie ettt ettt e eee e ree e st e e st estae e sate e ebeeesateesteeeraeeebeeenaaeenns 139
0.26.4 SIZ8 SETEINGS et e e et e e e e e s e e e e e e e e nnnne 139
6.26.5 Keeping teXt area ViSibI.. ..o it ae e s 139
6.26.6 Displaying annotation OVEI @XES.......cciiciiieiiiiiieiiiiieeeeiiieeessteeeessareeessraeeeessseeesssseeesssneees 139
6.26.7 Clipping inSide Sraphuiii i e s e e e araee s 140
6.26.8 CONLIOIING the Z OFUEN ..eieueieeciee ettt st ste e et e e st e e ste e eaeeeebeeesaneeens 140
6.26.9 LayerGrouping performance optimizationccccceecvieercieeiee st 140
6.26.10 Converting between axis values and screen coordinatesccccoevveeeeeeenieencieeeseeesiee e 141
Lo A A W= (=T o oo) OSSPSR 142
6.27.1 Hiding / showing a series from [€8end DOXccccovirieiirinienieee e 143
6.27.2 Showing series in the 1€8EN DOXccocciiiiiiiiiii e sareee s 143
6.27.3 Selecting in which graph segment to show a legend boXccceevveeiviiiiiiciiiiee e, 143
6.27.4 MoOdifying CHECK DOXESeeeiieiiieiciiiie e e e e st e e s are e e s eaae e e esaereee s 143
o S o T g Tl o] o T PRSP 143
6.27.6 Modifying intensity series palette SCaAleSc.ueiieciiiiecciee e 144
6.27.7 CoNTrolliNg POSITIONS . .cciii ittt ee e e e e e e e e e e e e st ae e e e e e e e e s nnrraeeeeeeeeennnes 144
6.27.8 Allocating space for legend boxes between graph segmentscccccevvveeeeicieeeeciieeecccneenn, 145
6.27.9 Alignment of legend boxes in SEEMENt AP ..vvvviveiiiiiiiiiii e 146
6.27.10 Horizontal alignment of several legend boxes sharing the same marginccc.c......... 146
6.27.11 Resizing and moVving 1€geNnd DOXES.......coeeii i 147
6.27.12 LEEENA DOX BVENTS ... e e e e e e e e e e e e e e e e s nnrra e e e e e e e eaannes 147

LightningChart® .NET User’s Manual, rev. 10.5

6.28 Z0OOMING AN PANNING ..eiiiiiiiee ittt e ectee e eete e erte e e e rte e e e e eteee e esabaeeeeabaeeeesabaeesenataeeeesssteeeesseeesennsens 148

6.28.1 Zooming With tOUCK SCrEENeiiiiiieec ettt s rare s s be e s saaeeeas 149
6.28.2 Panning With tOUCK SCrEEN ...c..uii it s ssae e s b e e saaeeeas 149
6.28.3 Left MOUSE DULLON ACHION ..eiiiiiiiiieeee ettt 149
6.28.4 Right MoUSE BULTON CHIONuiiiiiiiii e 149
6.28.5 RightTOLEftZOOMACHION .. .ciiiciiii ittt e s st e e s e e e s ebaeeeessreees 150
6.28.6 ZoomiNg With MOUSE DULLON ...eiiiiiiiiicceece e e s 150
6.28.6.1 ZoOM iN/OUL DY ClICKING wvveeeeriieiieeeeeee ettt e tae e st eeaae e 150
6.28.6.2 Zooming With MOUSE CUISOr OPLIONScciccuiiieeeciiieeeecieeeeectre e e ecire e e esaee e e e saereeeesereeeseananees 151
... 151
6.28.6.3 Z00M iN WIth rECLANGIE ... e e e e e saaeee s 153
6.28.6.4 Configuring ZoOmM OUL rECLANEIE ..c..eviiie e erae e 153
6.28.7 Zooming With MOUSE WHEEIcc.eeriiiee e et aaee e 153
6.28.8 Zooming and panning with device Wheel OVEr @XiS......ccccvvcueeviiiiiieeeienesiee s eseeeeeiee e 154
6.28.9 Panning With Mouse DULLONcooiiiiiiice e 154
6.28.10 Enabling/disabling Ctrl, Shift and Alt.........ccoveiieiieiiice e 154
6.28.11 Z00M INJOUL WITN COOR ..uviiiiiiiiie ettt ettt ct e et et s et eeeaeeeebeeenaaeeens 154
6.28.12 Z0OMINE @N AXIS DY COUR ...uviiiiiiiiii i e e e et e e e e srae e e ennaeee s 155
6.28.13 Rectangle zooming about a configurable origin.........ccccovveiiiiiiien e, 155
6.28.14 Linking Y axes zoom With SAME UNILScevcieiiiieeiieecie st 155
6.28.15 AUTOMATIC Y Fit et s s e 156
6.28.16 ASPECE FatiO . i, 157
6.28.17 Excluding specific X or Y axes from zooming and panning operations........cccccceeevveeennneen. 157
6.29 DataBreaking by NaN or other ValUe...........ooo it 158
Lo 1O @1 1YV T TSP 160
(S0 3 R |V = o L3 161
(SRS 772 VA =Y ot o 410 F- | 1 162
6.32.1 SeleCting ACtiVE MAP .ciuiiiiiiiieieee ettt ettt st sttt b e b st e eeeee e 162
ST 770 A XY o Y=Yt - | T JS 163
6.32.3 Layers and their appearance SETLINGS.......ccccciiiiiiiiiiiecee e e e e e areee s 164
5.25.3.1 Setting individual fill and border style for each layer itemccccccveeiiiiiieiiiieiccee e, 165
6.32.4 IMOUSE INTEIACTIVITY . .uuuuiiiii s 166
6.32.5 BacKground PhotOS......ccuuiiiiiiiiiiiiiiie ettt e e s ra e e s nreee s 167
6.32.6 Combining other series With Maps......ccuiiiiiiiiiii e 168

Copyright LightningChart Ltd 2009-2023 9

6.32.7 Importing maps from ESRI shape file data......ccceevieiiiiiiniiiiiiec e 170

6.32.7.1 Programming interface for importing shp datacccccceviiiiiiiiiniie e, 170
6.32.7.2 D121 [=4SPPSR 171
6.32.7.2.1 Shapefile SEleCtion DIAlOgcccveeeiiiiiiie et 171
6.32.7.2.2 Select Record Encoding and Invalid Name Fields........cccoccveeiiiiieeecciee e 172
6.32.7.2.3 Layer data selection didlog........coccveiiieiiiiecee e 173
6.32.7.2.4 (L4700 I 1 =T TP TOTRTUPRRTOP 175
6.32.8 Importing and replacing Map laYerS.....c.uuii it e e s aaee s 175
Lo 1. T 1T 4 o - o LSRR 177
B.33.1 HERE . s 178
B.34 SEENCIATAS .ottt et ettt e s bt et e st e s bt e abe e s be e e bt e e s bt e s beeernteesbaeenareeas 179
6.34. 1 AdGITIVEAIEAS ...eeeieiiieeiee ettt et sttt e st e e st e s bt e e a b e e s be e e b e e s beeenateesbeeenareenas 180
6.34.2 SUDSErACHIVEAIAS .. eeeeiiee ettt ettt sttt e sttt e st e st e e sab e e sabe e e sabeesabeesnbeesbeeesareenas 181
6.34.3 MURIPIE SEENCIHATAS .. .vteieieiiiie ettt e e et e e e s rata e e e e nbaeeesnsaeeeesnnreeen 182
Lo T D = € [ol UL 5o OO PP PP OPRPP 182
6.36 LINESErIESCUISOIS ..nueiiieiiiiieee ettt ettt e e sttt e e sttt e e et e e e s sttt e s s bt e e e saabeeeseanbeeesenreeeeeanneeeesanneeesennres 184
6.36.1 Solving the data values in the position of LineSeriesCursor.......ccccuevivecieeeeiiveeeeiiieeeenneeens 186
6.36.1.1 Accurate method, solving Y value by X value using data points arrayccccceevveeercnnennn. 186

6.36.1.2 Coarse method, solving Y screen coordinate by X coordinate using data points array.... 186

6.36.2 Advanced LineSerieSCursor fEAtUMES........ciiiiiieirierie ettt st 187
6.36.3 Solving the data values from FreeformPointLiNeSeriesccccvvviereciriniee e 188
6.37 EVENTIVIAIKETS ...oeeiiiiiieerieere ettt ettt sttt e b e s be e san e sanesar e e bt e bt e sreesmeesneeenneens 189
6.37.1 Chart @VeNt Markerso ittt sttt b e b e st et ee e 190
6.37.2 LiNe SErieS @VENT MAIKEISeiiiieiiieeiieeieet ettt ettt st sre e e s ene e 191
6.38 Persistent series reNdering [aYEISuui i iiiei ettt e e e eree e e sbe e e e e sabae e e enres 192
6.38.1 Creating the JQYEN ..t e et e e e e e st e st e e e rae e ebee e nnaeeen 193
T P A O [T Yo T o= d o TN P2 1= USRI 194
6.38.3 AdJUSHING IaYer AlPNa cc.eeeieie e e e e e e areee s 194
6.38.4 Rendering data into the 1aYer ... e e re e 194
6.38.5 DiSPOSING the lAYEI weeeiieeiiieieee ettt st e e st ae e e s ba e e e s baeee s 195
6.38.6 Anti-aliasing data in the [QYer ... 195
o T A A CT - T = L1 o = 1= USSR 195
6.38.8 Some layer limitations to be aware of ... 195
6.39 Persistent series rendering iNteNSIty [aYerseeiiciiee i 196

LightningChart® .NET User’s Manual, rev. 10.5

6.39.1 Creating the JQYEr ettt st st e s be e e naaee e 197

o I A O [T T T o= d o TN P21 =Y USRI 197
6.39.3 Changing Palette COIOIS ...ttt e e s e e s ae e e e snreee s 197
6.39.4 Adjusting the intensity effect of new trace and decay of old traces......ccccccceeecvivveereeennnnnns 197
6.39.5 Rendering data iNto the [QYEr ... e s be e e saae e 197
6.39.6 DiISPOSING thE YN ..eiiiiiiiiiiiecee ettt e e te e sbe e e sabe e sbeesbteesbeeesaneenas 198
6.39.7 Anti-aliasing data in the @Yl ... i 198
6.39.8 Getting list Of lQYEIS.cci e s e e e areee s 198
6.40 CuStomM CONrOIS — ZOOM DAN ..couiiiiiiieie ettt e e b e e sareeeas 198
6.41 Custom controls — Violin POtcoooiiiiiiiiie e e e 199
=TT | T O OO TS OOU OSSO PPTOPROPRRRPRRPOO 201
7.1 3D Model and dIMENSIONScoveiiieiieiieee ettt e st e b et esbeesbeesaeesare e 202
7.11 WOKId COONAINALES ...ttt sttt ettt et sae e s bbb e snees 202
7.2 WIS ettt b e bt s a et ettt e bt e bt e s h e e et e bt e be e be e bt e sheesateeteereen 203
7.3 FramIEBOX .. it e e e s era e e e s nane 204
7.4 L0710 0= - OO P PP PPPI 204
7.4.1 Predefined CamMEIas.o i ettt sttt e sabe e eaees 207
7.4.2 Camera orieNntation MOGEcc.uiiiiiiiiieree ettt et sb e st e e sabe e s bt e s sabeesbeeesaseenas 207
7.5 [T =4 o £ PN 207
7.5.1 BT Yot oY o =1 I L= o} AU UPPRPRN 208
7.5.2 oo T 0 Ao 17 o | PPN 208
7.5.3 Lights and MaterialS......cccueeeiieeiiee ettt et e s e e et e sae e e sate e sbee e snneeenees 208
7.5.4 Predefined lighting SChEMESei i e 209
7.8 AXES et h e e e ettt b e R e st s a e e bt e bt e bt e s ree st e e teereens 209
7.6.1 [or=1 o o IR OSSP PP OPPPPOPPRPN 210
7.6.2 (O g T=T0) &= Lo} o RO TSP PP OTPRPO 211
7.6.3 (00T 0 o117\ 1F={ 0 0 o 1=T | PR PR 211
7.7 1Y T =410 PP PP PPPPPPPO 212
7.8 D T o I =T =T - | SRS 212
7.9 POINTLINESEIIES3D ittt e st e e e e s e e e s sb e e e e s enee e e s samrneessnreeeenane 213
7.9.1 POINT STYIES ...ttt s st e s b e e st e sb e e e sne e e sr e e saneeeanes 213
7.9.2 LN STV IS 1 iiiee ittt et e et e s e et e e s e bte e e s e bteeesebtaeeseabaeeeeaabeaeeeaans 215
7.9.3 Vo o g = ae Yo] 1 o | 5 SRR 215
7.9.3. 1 POINTS ettt ettt ettt sttt st et b e bt sh e sab e s bt bt e beeabeesreeeaeeenreen 216
7.9.3.2 POINTSCOMPACT. . ettt s 216

Copyright LightningChart Ltd 2009-2023 11

7.9.3.3 PointSCOMPACICOIOrEA.....cciceiiieieiiiee ettt e e e e e e e ratae e e et a e e e s aaaeeeeraeaeeen 217
7.9.4 Coloring points iINAIVIAUAIIYuveiiiiieiecee e e e e 218
7.9.5 Setting points Sizes iNAIVIAUAIIYccuvveiiiiieic e 218
7.9.6 Y T A role] (o] o T =4 a1 IR 219
7.9.7 Displaying millions of SCatter POINTS.....cuiiiciiiiriiieiiie ettt 219
7.10 SUIfaCEGIIASEIIES3D ...uuiiiiiiiiiiieeiee ettt ettt et ettt sttt e b e s bt e st st et e e bt e bt e smeesmeeeneenreens 221
7.10.1 Setting sUrface rid data....cccoeceeieiieiieeeieecee ettt s be e e saaee e 222
7.10.2 Creating surface from bitmap file......c.cooviiiriiiiiii e 223
0 e T 1 I Y 1= PRSPPSO 223
0 A 0o T o) Lo TU Tl o Y- 1 =1 o USRI 225
7.10.5 WiIreframe MESH ..o ittt st et e st st e st e e sbe e e sareeeas 226
7.10.5.1 Some notes when using wireframe simultaneously with fill..........cccccoeeviiiiiiis 228
7.10.6 CONTOUN TINES ettt ettt et e s bt e sate st e e bt e beesbeesmeeemteenneenteens 229
O R - To [T 1Y 1 USRI 230
7.10.8 Scrolling sUrface dataceeiiciiieieiie e e aaeeeen 230
O I o - TaTo | 1o Y- =Y E o - =Y o oy USRI 232
7.11 SUIfaCceMESNSEIIES3D .. uiiiiiie ettt et ettt s e e sttt e st e e sbe e s bt e e s bt e s bt e e areesbeeesareeas 233
7.11.1 Setting surface MeESh data........ceiccuiiii i 234
712 WaterfallSEriES3D...c i eie it ettt ettt ettt e sb e st e e st e sttt e sabeesbe e s beeesabeeenbteesabeesbeeenareeas 235
713 BArSEriEs3D ciiuiiiiiiiiiiiiiiic ettt s a e s e e e aa e e 236
e T R - Y- 1 6= { (o TV 1o ¥ - SO PSP PPPPPUPPTOt 236
N T A - - T Y 1Y U S 239
7.13.3 Setting bar series data......ccoiciiiiiiciiie e e e e e aaaee s 240
7.13.4 Showing bars horizontallyoooceiiii i e e s raaeee s 241
714 IMESNIMOTEIS ...ttt ettt et s bt e st e st et e be e bt e s be e saeeeateenreen 242
0 - 5 R o Y- o 110 ¥ - 12 s Vo o {1 USSR 243
7.14.2 Positioning, scaling and rotating the Model..........oouer e 243
7.14.3 Enabling fill and Wireframe.........cccuuiiiieiiei ettt et aaee s 243
7.14.4 CUStOM-COIONING Fill...cooeeeieeeeeeee e e e et e st eere e e sneeesnneeens 244
7.14.5 Custom-COlONNG WIrfram@......ccoccuiiiiiiiiiie ettt e e et e e e aae e e e aaa e e e eaaaeee s 245
7.14.6 Reverse vertices WiNdiNg Ordercooccuiiiiiiiiiie et e e rare e e e e e s aae e e s naaeee s 245
7147 Shade MOTE ..ttt et ettt r e e et et ere e 245
7.14.8 MeshModel reNdering OrdErcucce it e e e e e e e e e e e e e s eanbreeeeeeeeesannes 246
7.14.9 Constructing MeshModel programmatically from verticesccocceeeviieieeiiiiee e, 246

12

LightningChart® .NET User’s Manual, rev. 10.5

7.149.1 Updating the bitmap fill efficiently.........ooooieieee e 247

7.14.10 Tracing the model With MOUSEcoociiiiiiie e 248
715 VOIUMEIMOGEIS ittt ettt e st sttt e s e e s et e sab e e sabeesbeeesabeesaseeenseesareeennseanns 249
TS R o ¥- [o [T Y- Ao - | - USRI 249
N T N o o T o 1= A (=TSO PP OPPRPPPPTPROE 249
7.15.3 RAY FUNCHION c ettt e e ettt e e e e s s st bt e e e e e e s e s anbtneeeeesssannnns 251
7154 TREESNOI .. ettt st sttt b e b e s e ereens 253
8 T T 0] [Yot ol [T o 11 V- TP PSRRI 254
S Y [Tol N T o = PP OPUPRRRPR 255
N T Y- 1o oY o [T oY= SN LI @ o] d o] USRI 256
7158 SMOOTNNESS ..ottt ettt ettt e st e st e e st e e sa b e e sbe e e sabeesbeeesabeesbeeesareenas 257
7.15.9 EMPLYSPACESKIPPING. cciittiieiiitiiie ettt ettt sttt e et e et e e e st et e e s sabreeeseabaeeesabaeeeeantbaeeennreeen 258
7.15.10 (O] =Tl 1Y A TP UPPT PP 259
7.15.11 Brightness and DarknN@sscooceiiiiiiiiiie ettt e e e e e aree e e e nres 259
A L o Tot =T g d [T T D I o] o [T ot 4P PRPR 260
7.17 POIYEON3D OBJECES ..c.eeiiiiiiiiiicte e e s e 261
R D - - I ol U1 5o | OO P PP OPRPO 263
7.19 Zooming, panning and rotatingcccceieciiiiiiiiie et ee e e aras 265
7.19.1 MOUSE WHEEI ZOOMING ...vviiiiiiiiiieiiiie ettt ee ettt e et e e et e e e st ae e e e nbaeaessnsaeeesnnsreeen 266
7.09.2 BOX ZOOMING tiiiiiuiiiiiieeeeeisiiittteeeeeesssaittteteeeessssssstaseeeeesssssasssssaaeeesssssssssssseeeessssnssssssseesesssnssnns 266

7 e IR T o To T 0 o] Yo o g T~ 0SS 267
7.19.4 ZoomToDataANdLabels..........ooiiiiiei et 268
7.19.5 ROtating and PANNING c...euiiiiiiiiie ittt sttt e s st e e st e e s bae e e s aaaee s 269
7.19.6 ZoomMiNg With TOUCKN SCrEENeiiiiiiiie e e e e e e e s aa e e e s eaaaeee s 269
7.19.7 Panning With tOUCN SCrEENeiiiiee e e e s aaeee s 269
7.19.8 Using Mouse WHEEI OVEI @N @XIS ...uuviiiiiuiiiieiiiiieeiiiieeeeciieeeessiteeeesireesssaeaeessssaeeesssseeesssseees 269
7.19.9 Zooming, rotating and Panning DY COUE.....ccuiiiiiiiiiieeii et e s saeeens 269
A O I W= (-1 Yo [oY) =TSP 270
7.20.1 Hiding surface series palette SCAlES......cuuiiiiciiiiiiiiiie e e 270
7.20.2 Positioning legend boXes iN VIEW3D........uiiiiiiiiiiiiiieesiiee et e ssiree st e s e e ssareeessnneee s 271
7.21 Clipping objects Within aXiS FaNEES.......ccuiiiiiie i e e e eeerrr e e e e e e s brre e e e e e e e e ennrraaeees 272
7.22 ANNOTATION3D .. s e s e e e e e s ee e s nreas 273
T @e Lo) de [o T | (ol VA =] 0 I el e] V=Y =T ST 274
8.1 Yo a1l g or- | L0 Ta T F= Lo 1o TSRS 274

Copyright LightningChart Ltd 2009-2023 13

8.1.1 Converting from spherical t0 Cart@sianccccveeiiiiiiie e e 275

8.1.2 Converting from cartesian to SPherical........oouiiiiiiiiiice e 275
8.2 CyliNAricalCartesian3D......ccccuiieiiiiiee ettt e st e e et e e e st ae e e sasbaeeesantaeaeeansreeesannreeen 276
8.2.1 Converting from cylindrical t0 CarteSianoocvueiiiiiieiiccee e 277
8.2.2 Converting from cartesian to cylindricalccueiiviiiiiiiii 277

S Y TV =1] B PP PP UPPPPOPRP 278
9.1 L o] o =T A =T PP PPPTPSPPPPPPTT 279
9.2 PIE SIS, ettt ettt et et e s bt e e s hae e s bt e e beeesabeeebeeeanteesareeesareena 279
9.3 Y=y ud (gt Y I o)V ol Yo TR 280
9.4 VieWing Pie Chart iN 2D ..c..cooiiiiieieesiiesie ettt ettt st sttt b e sb e e s e st eeeere e 281
L0, VIBWPOIAI . ettt et e s e sttt e s at e e s bt e e s abeesbb e e abbe e s beeesabeesabeeebeeesneeesareeas 282
L0, L AXES ciiiiiiiiie aaeaaeaaaeaeaaaeens 283
10.1.1 REVEISEA QXES ..eeiuviieiuiieeiieeniiteeteeesteestte e sttt esbtessaeeesabeesbeeesabeesbeeesnseesbaeesabeesbeesanteesabeeenseens 284
10.1.2 Setting rotation angles of the SCAlESccociiiiiieie e e 285
0 O Y < Y=o AV] o3 TSRS 286
10,2 MIaFgiNS i 286
O B === o Vo o To =TSR 288
10.3.1 Hiding Palette SCAlES...ccoueiiiiieeee ettt et s s saee s 288
10.3.2 Legend box positioning in VIEWPOIAKcovcieiiiiiiiieeciec et 289
10.4 POINTLINESEIIESPOIAI ... ettt ettt e b e b e sae e st sab e e b e e beesbeesaees 290
1041 SettiNg data. e ciiie e e e e e e re e e s ebae e e e earees 290
O o1 1=y N ol [T =SSR 291
10.4.3 Custom shaping and coloring with CustomLinePointColoringAndShaping event................. 292
O Y T Y= g 1= PSP T UT PR PPPROPPI 292
1051 Setting data..ccccceeee e e e s te e s s ebae e e e sabes 292
O ST Y=ot {0 PSPPSR PPPPTOPPI 293
10.7 ANNOTAIONS ..ttt e s e e e e e e e e s nraree s 293
L0.8 IMAIKEIS. .ttt ettt ettt e b e h e s at e s a e et e bt e bt e bt e s bt e sheesat e et e e bt e ebeeeaeeeateeabeeabeebeenbeenaeas 294
0SS T = = 01U T o PP 295
10.10 ZOOMING AN PANNINEG c...ttiieiiiiiieeeiiieeeecteeeeestr e e e e steeeesetteeeesssteeeeesataeeeeassseeessssseeassssseeesnsssasessssneen 297
10.10.1 Zooming operations and MEthodscoccuiiiiiiii e 297
10.11 Data clipping iN VIEWPOIAroiiiieie ettt e e e st e e e et a e e e sasaaeeennaaeee s 299
10.12 Custom coNtrols — Half DONULcouiiiiiiiieieete ettt ettt sttt sbe e 300
10.12.1 F X (o [T Y= de I - SRR 301
10.12.2 Configuring Half DONUL ChartScccuiiii ettt e et e e e e cte e e e e earee e e earaeeeeans 301

14 LightningChart® .NET User’s Manual, rev. 10.5

S V1YY Y o V1 o 1 PSPPI 303
O R LY (L= TSP P PP PPPTPPPPO 303
L0 2 VA gINS i 307
I B == =Y oV I o To =SS 308
11.4 POINTLINESEIIES ...ttt e e st e e s n e e e s e e e e s nn e e e e snreeeesanreeeesannneeeas 308
Y=Y u o = dc = - T PRI 309
11,6 ANNOTATIONS .eeiiiiiiiiii ettt a e s 309
A /- 1 =T TP S TSP PRSPPI 310
R T D - = o1 U | 1o PO PPPTT PP 310
S T Ao Yo o 1T = 4T o Yo I'o - Yo VoY o - 00U SUSRI 311

12, COlOr thEMES ... ettt ettt e st e e s bt e e sabe e s bee e s abeesabeeesabeesabeesbaeesabeeesareanas 312
12,1 CUSTOM thEMES. . ettt et et st e s bt e e sabe e s beeesnteesabeeesabeesanes 312

13, SCIOIIDAIS ..ttt bbbttt b e b e bt sh ettt et e e bt e eheeehe e sat e st e e be e beenbeeaneas 313
70 A Yol o] || o Yl o]] oY= o A [=T T 313
13.2 Scrollbars with decimals or Negative ValUes..........ccoouiiieiiiiniiiieeee e 314

14, EXPOIt @nd PrinTiNg ..ccoceeeeieeiiiee ettt ettt e e st esbee e sabe e s bt e e sabeesbeeesabeesabeeebaeesbeeennreenas 316

14,11 BimMap iMABE EXPOIT ..uuuiiiiiieiiieeiiiiteee ettt e e e e s s ree e e e s s s ssabtbteeeesesssasnbeaaeeeesssesanseneees 316
NI 0 A VA =Yt (o a4 g = T= LN =) 4 o To | o PO S PSP SPPP 316
14,1.3 CoPY 0 CliPhoard....ccc.co it 316
14.1.4 Capturing t0 DYLE @ITaAY cueiiiiee ettt ee e et e e st e s te e ebee e snreeennaeas 317
14.1.5 Setting output stream for continuous frame Writingccccovevieiiiciee e 317
I o 0| 4 = TP P TR PP USSP 318

15. LightningChart PerformMantec.ooiiieiieieeee ettt 319
15.1 Selecting the correct APl @ditioNccoccuiiii i s e e e e sarae e e e saaaaee s 319
15.2 Set the rendering OptioNs COMTECLIY....ccuiiiiiiiiiie it saaee s 319
15.3 Updating chart data OF PrOPeItiES....cciuiiiiecciieeeeiieeeeeette e e ectte e e estee e e e etaeeeesasaesesaasaeeeesssaeeesnnseneans 319
15,4 LINE SBIES TIPS coieiiiii i, 321
15.5 INTENSITY SEIIES TIPS iiiiiiiiiiiiiitee ittt ettt et e e s sttt e e e s s ssabbbeteeeeesssssssabeaaeeeesssnssssreaaeeessnns 321
15.6 3D OrthographiC VIEW 1iPS ..ccuuvieiiciiiiiciiiie ettt ettt e e e e e stre e e s saaae e e sstaeeeentaaeeesnnnaees 321
15.7 3D SUIACE SEIIES LIPS ciiuriieiiiiiiieeiiieieeecttee e ettt e e e et eestte e e e s sataeeeesataeeeeassaeeessssaeeeassseeesnnssaesesnsreeenn 322
15,8 MaAPS tiPS coiiei i 322
15.9 HAIOWAarre oottt ettt ettt e st e e st e s bt e e bt e e s b et e s e e e sareesabe e e sare e e beeeanreesareeesnreeeanes 322

16. LightningChart notifications, error and exception handlingccccoeviiiiiiiiciee e, 323

17. ChartManager COMPONENTcicciiiie ettt ccte e e eete e e eere e e eebee e e e stee e e eeabaeesesabeeeeesasaeesesssaeeeesnsenesesseeeesnnsens 324
17.1 Chartinteroperation, drag-arOP......ccccciiieiiciiee et e e e rre e e e str e e e e rarreeessntaeeeesnsaeeean 324
17.2 Memory management @NhanCeMENTccocciiiiiiiiiie et e e e sere e e e rer e e e s saeree e esaaeee s 324

18, LightNiNGCNart® Trader. ... ueii ettt e e e tee e e e et e e e e e bee e e e eabeeeeeeabaeeeeestaeeeeeaseeeeeanseeeeensens 325

Copyright LightningChart Ltd 2009-2023 15

18,1 BaSIC USAEE ciiiiiiiiiiiii e 325

18.1.1 Creating TradiNGCRartc.ueeei ettt e e e re e e e eabe e e e e earae e e earaee e eearees 325
18.1.2 Using TradingChart in WinForms application.........cccceiieeiieriiciiie e 326
18.1.3 Deploying TradingCart........ccoccuiiii it e s s e e s e sree e s ssabae e e e sares 326
18.2 ConfigUring USEr INtEITACE c.ouvviii i e s s rae e e s ssbeeeessanreee s 327
18.2.1 Setting COlOr-thEME ..uuiii e e e e e e stee e s s sbae e e e eares 327
18.2.2 Setting PriCe Chart tYPE coouuiii e ree e s s ae e e e eares 328
18.2.3 UL COMPONENTS .. eeaaeaaaaaens 328
18.3 Usinginternal LightningChart CONLIolccuviiiiiiiii e e 330
RS Yo [o [o T a (= o [T T=qo F-) - PR RRPR 331
R R D T - oY e 1] T [T o PSPPI 331
L18.4.2 IO filB ittt ettt s b e et s bt e et e s be e e s b e e s bt e s beeesbeeebeeas 332
18.4.3 CUSLOM data PrOVIEr ..cciiceiiee ettt e s e e e e sbe e e e e sabee e e ssnbaeeeennrees 333
18.4.4 AdJUSEING TIME FANEE wueiiiiiiiie ettt e et e e e e tee e e e e bee e e e abae e e eeaseeeeeeabaeeeeanbaneeennsens 334

R T T DT | = N o1 U Yo] PO TRPPPTTOPPI 335
R T I DT = W o= ol 4oV 336
18.7 TeChniCal INAICAtOrS ...coiiiiiiiieetie ettt ettt s bt e e st e e bte e sabeesneeesabeesanes 336
707 R Vo o [T T o [ot o o3 USRS 336
18.7.2 ReMOVING INAICALOIS ..uviiiiiiiiee ittt e rree e s e e e s e bee e e e sabe e e e esabeee e ssnbaeeeennsees 337
18.7.3 Indicator types and ProPertiescccueeiiiiieeiiiiiee ittt 337
18.7.4 List of available iNAICAtorscooeeiiiiiee e 338
R T 0 = 1V VT o T= 8 oo TSRS 342
18.8.1 AdING drawing T00IS....ccuuiiiiiieiieeciee et eee et stee st e st e e sree e e sbe e e saseeste e ereeeereeenraeas 342
18.8.2 RemMOVING AraWing tOOIS ...cccuuiieciiieiiieeiie et ecte et e e rtee e e e tee s e e e sre e e sateesnte e sbaeesnseeenseeas 343
18.8.3 List Of DraWing t0OIS ...ceiiiciiiii ittt e et e e e re e s s sbae e e e earees 344
18.9 TradingChart troublESNOOTING ...cccvviiiiciiee e e e e ae e e e raaraee s 352
18.9.1 EFTON ISt ettt b e bt s at e et e b e e bt e e he e sat e et e e be e be e beenbeas 352
18.9.2 Frequently asked QUESTIONS........uuii i cciiee sttt e e e et e e e sree e e e sabae e s s enbae e e eneees 355
19. SignalGeNnerator COMPONENTiiiiiciiiee ittt e ceree et e eeee e e e eee e e e satee e s s ebeeeeesabeeesesnbaeeeesnbaeesesnseeeesnnsens 356
19.1 Sampling frequency, Output interval and FActor.........ccveiieciiiiicciee e 356
19.2 SiNE WAVETOIMS ..ottt st sttt et e b e sae e sanesare s b e e b e reennees 357
19.3 SOUAIE WaVETOIMS ..eeiiiiiiee ettt ettt e e ettt e e e e ete e e e eeabbee e e sbaeeesaasaesaeansaeeesansraeeeansseeans 358
19.4 TriaNgIe WaVETOIMS ..coeeiiiie ettt e ettt e e e ete e e e et e e e e e tbaeeeseasaee e s nsaeeesansreeeeannraeann 358
19.5 NOISE WAVETOIMS ...ttt et st e e et e e s b e e sae e sanesabe e b e e b e e reennees 359
19.6 FreQUENCY SWEEPS coiiiieeiieiiieiieieeeeee ettt ettt e e e e e e e e e e e et eaeeeaeeeaeaeeeaeeeaeaanens 359
16 LightningChart® .NET User’s Manual, rev. 10.5

19.7 AMPIITUE SWEEPS «vveeeieeiieieieiieie ettt e eete e e e etr e e e e etteeeesstteeeeeaataeeesaasaeeeeassaeeesassaeeesnnsseeeeansraesennsrneenn 360

S IR T v T V=T o To I o] o o 11 o= RS 360
19.9 Multi-channel generator with master-slave configurationcccceeeeieiiiiiei e, 360
S T (O I O 10 o TU e - = Ty { =T o o SRS 361
20. SigNAlREAEr COMPONENTeiiiiieiiiieiiie e etee ettt ettt e et e e st e st e e ab e e s beeesabeesabeesbeeesabeesbeeesnseesaneeesareenns 362
20,1 K@Y PrOPEITIES «.eeeeeiiieeieeeeeeeittee et e e e e ettt e e e e s e st b et e e e e e e ssaabbbteeeeeseesaansbateaeeeseasasnsabeaeeessessannsenaees 362
20.2 Opening file quickly for Playbackccueeiioiiiiee e e e 362

P B AU e [o1V aY o TV N flofo] g1 oY) o 1=T | A USSR 364
0 0 R o o o L] o [T PP PPPPPPPPPPPIRS 364
212 MEEROMAS ..ttt e s e et s bt e e hb e e s be e e sabe e s bt e e beeesreeesareeas 364

2 . T o V7= o | PP PPPP 365
21,4 USAZE (WINFOIMS) ..eeeiiiiciiiee ettt ettt e ettt e e et e e e et e e e e e aabe e e e easbaeeeassaeesenstaeeeennseeeeennseeeeensens 365

N Tt R O =T) o o IO OO SR ST PPRTOPPPT 365
21,42 EVENT NANAIING ettt s e e 365
Y B S Y o T {U T o T V- P PPPPPRR 366

B O R - o 1] o = PSP PPPPRPPPP 366

A T B) (o] o] o] [o = 2 PRSPPI PPPPPOPPPRROt 367

D T VLY - (V1Y PP 367

A I 70t R O ¢ <= o o PSPPSR P PP PPPPPOPPPPRO 367

P2 U e [TeT@ 10} d o 10 aele] g Yo o] 0 1=T o} AR PP 368
D R o o o 1=T o A =TSP UPPPR PP 368
23. SpectrumCalculator COMPONENTcccviiiiiiieiee ettt s s s re e sre e saee e 369
P Y I~ o | 11 =T PSPPI 371
25, HEAAIESS MOME ...ttt ettt st st et b e b e e s ae e st re e r e e e nane e 373
2511 Headless RENUEIING ..c..cooiiriieiieieeerte sttt sttt s s et sne e s e 373
25.1.1.1 Additional initialization OPLIONS......vviiii i 373
25.1.1.2 CapturiNg IMAGES ..cuviiiiiiiiiiiiiit e s 374
25.1.2 Limitations and REQUIFEMENTSuuiiiiiiiiiiciiiiee e e e e e e e e b rre e e e e e e e snnreaeeeas 375
25.1.2.1 TREEAGS ettt ettt b e a e ettt e b e he e sa e e st e e be e be e beesheeeateeaeeenteen 375
25.1.2.2 (0 0T Tl VT oo £ YU PPN 375
25.1.2.3 [aF 4T o T=I VT o] o o] o SRR PP P PPPPPPPPPRPPPPPRE 375
25.1.2.4 LICENSING ceiiiiiiiiiiiiiiti e s 375
O e T o' o oY o] ST Yo [V o o TP UPPPRR 376

26. Using Windows Forms chart in WPF appliCation..........ceeeii ittt e e e e e 378
26.1 How about using LightningChart Windows Forms controls in WPF?cccccoeeeciiiiieeeeeeeeccinenen, 378
26.2 Should I use Arction.WinForms.LightningChart in WPF?ccviiiiiiiieecee e 378
27. Using LightningChart in C++ appliCatioNsueiiiiiiiie it bree e e beaeeeeaes 381

Copyright LightningChart Ltd 2009-2023 17

27.1 Install required C++/CLR PACKAZES ..ecoveiiveiitiietieteeete ettt ettt ettt et eareereebeesbeesbeesaneeare e 381

27.2 Setting Visual StUIO PrOJECEvviiiiiiie e e et e e e et ae e e e aba e e e e aree e e e nres 382
27.3 Creating LightningChart application in CH4 ProjeCt.......ccccviieiiieeeieiiiee et cvre e e 384
P T D 1T oo 1 <l o -1t £ <] o o HOU TSP PP P PP OPUPPPPPPPO 387
D 20 R O o =Y e 1 o Yo 1Y [o TSP 387
D A 0 11 o To 1Y [oY o] o [T ot £ PP 387
A TN] o JT<Tor s Lo Te 11l s Vo] Y- IR PSPPIt 388
29.1 Sharing objects between other 0bJECES........cocuiiiieiiieecce e e 388
30. Deployment / distribution of LightningChart assemblies..........cccccoveviieiieriiecie e 390
30.1 Referenced assembBIIES..... ..o e re e e e narees 390
K10 A W ol o Y YRR PRSP 391
30.3 Obfuscating application COUEouiiiiiiiiiiie e e sbee e e sabee e e e sares 391
30.4 Obfuscating LightningChart COAEoiiiiiiiiiee e e e e e et e e e earee e e 391
30.5 XML files of LightningChart assembliescoocuiiieiiiiii i 392
3 I oYU o 1T g To Yo a1 V-SSR 393
31.1 Updating from OldEr VEISIONceiiiiiiiie ettt ettt et e e s see e e sbee e e e seree e e s sabeee s esnseeeeennnees 393
A VT o BT U e o Yo] o PSPPI 394
31.3 Running in Virtual Machine platformscooiiiiioiie e e e 394
A O T 1 SRS 395
32.1 Intel Math KerNel Orary ...ttt et eebae e e e sabee e e e earae e e e nres 395
32,2 OPEN-SOUICE PIrOJECES weveeeeiiiriiuiriiteteeessriiittteeeesssasaurarteeeesssssssrttteeeessssssssreeeeeesssssssssseaeeeessssssssssseees 395

18 LightningChart® .NET User’s Manual, rev. 10.5

1. Overview

LightningChart® .NET SDK is an add-on to Microsoft Visual Studio, consisting of data visualization related
software components and tool classes for WPF (Windows Presentation Foundation), UWP (Universal
Windows Platform) and Windows Forms .NET platforms.

LightningChart components are delivered for serious scientific, engineering, measurement and trading
solutions, execution performance and very advanced features in special focus.

LightningChart components use low-level DirectX11 and DirectX9 GPU acceleration instead of slower
GDI/GDI+ or WPF Graphics APIs. LightningChart has fallback to DirectX11/DirectX10 WARP software
rendering when GPU is not accessible, such as in some virtual machine platforms.

1.1 Chart editions

For WPF, LightningChart component is available in various binding level editions, to balance between
different performance and MVVM (Model - View - ViewModel) bindability needs. UWP chart is based on
the bindable WPF version, providing similar performance, binding and MVVM capabilities.

Chart edition Properties Series data | Per-data-point Performance
binding binding binding

WPF (non-bindable) No No No ;

WPF (bindable) Yes Yes No Very good

UWP (bindable) Yes Yes No Very good

WinForms No No No

Table 1-1. Bindability and performance matrix.

e For best performance in WPF and multithreading benefits, select non-bindable chart.
e For good tradeoff between WPF bindability and performance, select bindable chart. Bindable
also supports MVVM design pattern.

Bindable chart API is very similar to LightningChart v.6's WPF chart but comes with extended properties
binding which also covers objects created in collections.

Different chart editions can be used in the same application. It's possible to create basic charts with
bindable chart and bind various properties while using the non-bindable chart for performance-critical
tasks. The collection properties of bindable charts (such as ViewXY axes, 3D lights) are empty by default
which supports XAML editor in full. In Non-bindable and WinForms collections are prefilled with default
items.

Per-data-point binding is supported only in fully-bindable WPF, which is available in the source code
ONLY: Source code client can build from there. 8.5 is the last version officially supporting per-data-point-
binding feature.

Note! Non-Bindable WPF chart is not intended to be configured in XAML at all. Use it in code-behind.

Copyright LightningChart Ltd 2009-2023 19

1.2 Components

Components that don’t have an Ul, are marked with X.

4 LightningChart .NET SDK 10 4 LightningChart .NET SDK 10
k Pointer k Pointer
L LightningChart & LightningChart
4 LightningChart B ChartManager
X Audiolnput & Audiolnput
& AudioOutput & AudioOutput
A\ Audiolnput @« SignalGenerator
& AudioOutput # SignalReader
@ SignalGenerator +#% SpectrumCalculator
SignalReader 8 TadingChart
@ SignalGenerator
¢ SignalReader
#% SpectrumCalculator
g TradingChart

Figure 1-1. On the left, WPF toolbox components. On the right, WinForms toolbox components

Charting assembly

| LightningChart: The chart component. Visualizes data in various presentations.

In top corner of the icon, B = Bindable WPF chart

! UWRP chart, available in UWP applications.

B ChartManager: Controls interoperation of multiple charts components and real-time
measurement memory management. See chapter 17.

TradingCharts assembly

= TradingChart: Charting control made for Trading and Finance apps. Trader library is built on
top of LightningChart API. See chapter 18.

20 LightningChart® .NET User’s Manual, rev. 10.5

SignalTools assembly

Components that don’t have an Ul, are marked with X.

\

L™

|
-
i

Audiolnput Reads waveform audio stream from a sound device. Line-in or microphone-in
connectors are typical options available in a sound device. The real-time stream can be
forwarded to other controls. See chapter 21.

AudioOutput Plays back real-time data stream through the sound device, to speakers or line-
output for example. Doesn’t have to be an audio stream, any sampled real-time signal can
be used. See chapter 22.

SignalGenerator Generates signal from multiple configurable waveform components. See
chapter 19.

SignalReader Reads waveform data from a signal file, such as PCM formatted WAV. See
chapter 20.

SpectrumCalculator Converts signal data (time domain) to spectrum (frequency domain), by
using FFT (Fast Fourier Transform). Also contains methods for backwards conversion,
frequency domain to time domain. See chapter 23.

Copyright LightningChart Ltd 2009-2023 21

1.3 Namespaces

Chart Assembly name Namespace root XML namespace
edition
WPF (non- | Arction.Wpf.Charting. Arction.Wpf. xmlns:lcunb=
bindable) LightningChart.dll Charting "http://schemas.arction.com/
charting/ultimate/"
WPF Arction. Arction.Wpf. xmlns:lcusb=
(bindable) Wpf.ChartingMVVM. ChartingMvVM "http://schemas.arction.com/

LightningChart.dl| ChartingMVVM/ultimate/

uwp Arction. Arction.Uwp. xmlns:lcu=
Uwp.ChartingMVVM. ChartingMVVM "using:Arction.Uwp.ChartingMVvVM”
LightningChart.dll
WinForms | Arction. Arction.WinForms. N/A

WinForms.Charting. Charting

LightningChart.dll

Table 1-2. Assembly names and namespaces of LightningChart® .NET editions.

UWP uses several namespaces in XML. The following are the most common ones:

xmlns:lcu="using:Arction.Uwp.ChartingMvVM”
xmlns:viewxy="using:Arction.Uwp.ChartingMVVM.Views.ViewXY”
xmlns:axes="using:Arction.Uwp.ChartingMVVM.Axes”
xmlns:titles="using:Arction.Uwp.ChartingMVVM.Titles”
xmlns:seriesxy="using:Arction.Uwp.ChartingMvVM.SeriesXyY”

When using other views than ViewXY, use the respective view and series names (View3D, ViewPolar etc.).

Example of using namespaces in UWP:

<lcu:LightningChart
ChartName="Line and Bars Chart">
<lcu:LightningChart.ViewXY>
<viewxy:ViewXY>
<viewxy:ViewXY.XAxes>
<axes:AxisX Maximum="10"/>
</viewxy:ViewXY.XAxes>
</viewxy:ViewXY>
</lcu:LightningChart.ViewXY>
</lcu:LightningChart>

22 LightningChart® .NET User’s Manual, rev. 10.5

2. Installation

2.1 System requirements

Check if the computer configuration meets the requirements

e DirectX 9.0c (shader model 3) level graphics adapter or newer, or DirectX11 compatible operating
system for rendering without graphics hardware. DirectX11l compatible graphics hardware
recommended.

e Windows Vista, 7, 8, 10 or 11, as 32 bit or 64 bit, Windows Server 2008 R2 or higher

e Visual Studio 2010-2022 for development, not required for deployment.

.NET framework v. 4.0 or newer installed

2.2 .NET compatibility

LightningChart is built primary for .NET framework, but is also compatible with the following .NET
versions:

e _.NET Core3.0and 3.1

e .NETS
e .NET6
e .NET7
e .NETS8

When using the above, Visual Studio may give a warning about installed package using different target,
especially when using NuGet packages. However, this does not prevent the application from working.
In these cases, the warning can be suppressed or just ignored.

Note that LightningChart will not appear in Visual Studio toolbox in .Net Core 3 and .NET 5 — 8 projects.
Therefore, the chart must be created and configured in code.

2.3 Run the setup wizard

Right-click on the LightningChart .NET SDK v10.exe. The setup will install the components into Visual
Studio toolbox. It also installs the help files associated with the toolbox controls. If components or help
install fail, install them manually as instructed in the following sections.

When trialing LightningChart, SetupDownloader.exe is most likely used. This downloads and installs the
SDK, meaning running LightningChart .NET SDK v10.exe explicitly is not required.

Copyright LightningChart Ltd 2009-2023 23

2.4 Adding LightningChart components manually to Visual Studio Toolbox

WinForms

Open Visual studio. Create a new WinForms project. Right-click on Toolbox, select Add Tab and
give name "Arction"

Right-click on Arction tab, and select Choose items...

In Choose Toolbox items window, Select .NET Framework Components page. Click Browse...

Browse Arction.WinForms.Charting.LightningChart.dll and
Arction.WinForms.SignalProcessing.SignalTools.dll, from the folder the components were
installed on, typically C:\Program Files (x86)\Arction\LightningChart .NET SDK v.10\LibNet4, and
click open. The components can now be found in the toolbox.

Open Visual studio. Create a new WPF project. Right-click on Toolbox, select Add Tab and give
name "Arction"

Right-click on Arction tab, and select Choose items...

In Choose Toolbox items window, Select WPF Components page. Click Browse...

Browse Arction.Wpf.Charting.LightningChart.dll, Arction.Wpf.ChartingMVVM.LightningChart.dll,
and Arction.Wpf.SignalProcessing.SignalTools.dll, from the folder the components were installed
to, typically C:\Program Files (x86)\Arction\LightningChart .NET SDK v.10\LibNet4, and click
open. The components can be now found in the toolbox.

2.5 Configuring Visual Studio 2010-2022 help manually

This chapter gives the information how to install LightningChart® .NET help content manually. This
information is needed if Visual Studio 2010-2022 does not have any local help content installed. When
installing LightningChart® .NET and there isn’t any local help content installed, LightningChart® .NET’s
help will not install.

These steps allow to view LightningChart® .NET’s help from Visual Studio 2010-2022. Either press F1 on
LightningChart’s classes, properties etc. or use Microsoft Help Viewer to browse the help content.

24

LightningChart® .NET User’s Manual, rev. 10.5

2.5.1 Visual Studio 2010
Follow these steps to manually install LightningChart® .NET help content on Visual Studio 2010:

Open Visual Studio 2010.

Select Help -> Manage Help Settings.

On Help Library Manager, click Settings link.

Make sure that I want to use local help is selected.

If I want to use local help is selected, click Cancel to go back to Help Library Manager.

Otherwise click OK.

Click Install content from disk link.

7. Click Browse button and go to the folder where LightningChart® .NET is installed, by default
the path is C:\Program Files (x86)\Arction\LightningChart .NET SDK v.10\MSHelpViewer.

8. Select HelpContentSetup.msha and click Open button.

9. Click Next button.

10. Next to LightningChart® .NET Help there is Add link. Click it and make sure that Status
column value changes to Update Pending.

11. Click Update button. If Help Library Manager asks if you want to proceed, click Yes button.

Help library update begins.

vk wNe

12. After help library is updated, click Finish button to close Help Library Manager.

2.5.2 Visual Studio 2012-2022

Follow these steps to manually install LightningChart® .NET help content on Visual Studio 2012-
2022:

Open Visual Studio 2012, 2013, 2015, 2017, 2019 or 2022.

Select HELP -> Add and Remove Help Content.

After Microsoft Help Viewer starts, select Manage Content.

Select Disk under Installation source.

Click the button with three dots to browse files.

Go to the folder where LightningChart® .NET is installed, by default the path is C:\Program
Files (x86)\Arction\LightningChart .NET SDK v.10\MSHelpViewer

Select HelpContentSetup.msha and click Open button.

Next to LightningChart® .NET Help there is Add link. Click it and make sure that Status
column value changes to Add pending.

o Uk wnN PR

% N

Copyright LightningChart Ltd 2009-2023 25

@ Microsoft Help Viewer 2.2 - Visual Studio Documentation - o x

]
Contents elp Viewer Home VIR
Filter Contents bl
Add and Remove Content
(idfpdr=narlizms Adding content will refresh all local do with available updates
Installation source: Local store path:
Online ® Disk: C:\ProgramData\ Microsoft\HelpLibray2\C|
Filter documentation (Ctrl+ Alt+F) p Pending changes:
Neme Action Status Size Add
4 Arction Ltd LightningChart Ultimate Help 1]
4 LightningChart Ultimate SDK
LightningChart Uttimate Help Cancel Add (pending) 36 M
4 »
Estimated download size. 56 MB
Free disk space: 110675 MB
Required disk space: 280 MB
"] Cancel
JENICIEY Index Favorites Search
[P— "

Figure 2-1. Adding LightningChart help

9. Click Update button. If Help Library Manager asks if you want to continue, click Yes button.
Help library update begins.

10. After help library is updated, Microsoft Help Viewer can be closed.

11. In Visual Studio Menu / Help, select Set Help Preference : Launch in Help Viewer.

Help

© ViewHelp Ctrl+F1, V

BB Add and Rernove Help Content Ctrl+F1, M —
5et Help Preference . Launch in Browser
Customer Feedback Options # | ¥ Launch in Help Viewer

Figure 2-2. Setting help preference.

2.6 Code parameters and tips by Visual Studio IntelliSense

IntelliSense may not show code hints when typing LightningChart related code, if the LightningChart.dll
file is referenced from Global Assembly Cache and the controls are not installed by the automatic
toolbox installer. Remove the LightningChart.dll file from References list of the project. Then add it again
by browsing from the install directory (typically C:\Program files (x86)\Arction\LightningChart .NET
SDK v.10\LibNet4).

26 LightningChart® .NET User’s Manual, rev. 10.5

2.7 Selecting target framework

In C# project, the framework selection can be made in Project -> Properties -> Application -> Target

framework.

Application
(RFe /8
Build

Asserbly narme: Default namespace:

Build Events
WindowsFormsapplication35 WindowsFormsipplication35

Debug

Target framewark: Qutput type:

Resources MET Framewnrk 4 ~] [indows applicatian -
) MET Framework 2.0

Services JNET Frarmewark 3.0

(MET Framewark 3.5 Assembly Information,.,
Settings MET Framework 1.5 Client Profile

MET Framewaork 4 Client Profile
Install other framewarks. ..

Reference Paths

Signing
@ Ican and manifest
Security A manifest determines specific settings for an application. To embed a custom manifest, first add itto
wour project and then select it from the list belows.
Publish Teom:
(Default Tean) - [E B
Manifest:

Embed manifest with default settings

) Resource file:

Figure 2-3. Selecting target framework in C# project.

In Visual Basic project, the framework can be
compile options -> Target framework.

Advanced Compiler Settings -

selected in Project -> Options -> Compile -> Advanced

Optimizations
] Rernove integer owerflow checks [T] Enable optimizations

DLL base address: &HI0400000

Generate debug info: IFuII

Carmpilation Constants
Define DEBUG constant Define TRACE constant

Custom constants:

Exzample: Mamel="Valuel",Name2="Value2",Name3="yalue3"

Generate serialization assemblies:

[Autu

Target CPU;

[anycru

Target framewark (all configurations):

[.NET Frarnewark 4

MET Framework 2.0
{NET Framework 3.0
MNET Framework 3.5

MET Frai k 3.5 Client Profile
=== MET Fran k 4
~ MNETFra k 4 Client Profile

-Instal\ other framewarks...

Figure 2-4. Selecting target framework in Visual Basic project.

Select .NET Framework 4 Client Profile or version .NET Framework 4 onwards. .NET Framework 4.5 or

above recommended.

The LightningChart® .NET SDK controls will appear in the Visual Studio toolbox only if the correct .NET

framework is selected.

Copyright LightningChart Ltd 2009-2023

27

3. Dev Center

From LightningChart .NET version 8.5 onwards, LightningChart .NET Dev Center is automatically
installed when running LightningChart .NET SDK v10.exe setup. Dev Center is a new application, which
allows quick access to LightningChart® .NET features and resources. The following tasks can be
accomplished with few mouse-clicks.

- Open Interactive Examples demo application

- Open documentation resources such as tutorials and the User’s Manual

- Contact support via e-mail

- Automatically gather application information, which can be sent to technical support
This often helps the support team to solve the issue faster

- Quick link to send feedback to manufacturer

- Check license status and open License Manager to update or activate licenses

- Purchase new licenses

VY LightningChart® | vescener2110
! NET

Documentation
NET Interactive Examples

Interactive Examples enables you to: ﬁ Eﬁ ?

Getting Started User's manual Local help file

Support

X AR

E-Mail Support Resources Net Support info

Open Interactive Examples automatically Others

Open Interactive Examples a

Tutorials Feedback License Purchasing
. available:
License Manager Update Now

Figure 3-1. The main window of Dev Center containing buttons for different actions.

28 LightningChart® .NET User’s Manual, rev. 10.5

3.1 Opening Interactive Examples

LightningChart Interactive Examples is one of the main sources of information when learning how to
use LightningChart components and features. Interactive Examples can be run by clicking the “Open
Interactive Examples” -image in Dev Center or via a shortcut in Start-menu. Interactive Examples has a
large number of examples grouped in various categories and a search bar to search for specific
examples. Furthermore, individual examples have Properties -tab allowing modifying the chart
properties on the fly.

¥ LightningChart® | NET Interactive Examples

Search results (%0 /0)

Previously opened examples (%0 / 6)

- | = -

[]
Spectrogram chart
Showcase (# 0/ 10) Scrolling high-resolution spectrogram example, made
with IntensityGridSeries, using colors directly. Shows
optimal way to plot spectrogram as fast as possible.

Tags:

Very easy examples to start with (%0 / 2

Performance (0 / 8)

ViewXY (# 0/ 132)

Figure 3-2. Tile view of Interactive Examples allows browsing examples by categories.

Installing LightningChart .NET SDK automatically adds the source codes of all the demo examples to the
computer. Clicking “Open example VS project” -section in Interactive Examples allows opening and
modifying the current example as a standalone project in Visual Studio.

Copyright LightningChart Ltd 2009-2023 29

#¥¥o LightningChart® | NET Interactiv

Exampl
8BillionPoints Serolling line plat of 8 BILLION (8,000,000,000) data points.

ViewXY annotations example. Annotations can be used In varlous shapes and styles, and
they are mouse-Interactive. Click on the annotation to bring the edit controls visible. P
Shift key to use alternative/aligned operation. Right-click on the annotation to open a con
This example shows you result table made with Annotations.

8 Billion Points

Polar chart with area series. g line plot of 8 BILLION (8,000,000,000) data

This example shows you real-time measurement monitor with area serfes.
Simple area serles example. s > ian | Area

Audiolnput liolnput component is used to input waveform data from a sound device, such as mic-i
real-time waveform data is plotted in waveform graph:

AudioinputSpectrogram Input component is used to input waveform data from a sound device, such as mic-in
or line-in. The real-time waveform data is plotted in waveform graphs.

AudicOutputSignalGenerator SignalGenerator component Is used to generate live data stream. The stream Is forwarded to
the chart for visualization and for AudicOutput component for audible sound through
speakers.

3 @ . AudioOutputSignalReader SignalReader component Is used to read data from a file, to generate a playback. The data is
forwarded to AudioOutput component for audible sound through speakers. The chart
displays the waveform with a indicator of current playback position.

AudioSpectrogram3D SignalReader component is used to read data from a file, to generate a playback. Waveform
is displayed on a chart on the left. FFT is calculated in real-time and the spectrum data is

displayed with selected spectrum analyzer on the right, each channel in it's own control. rum | Signa

Automatic axis placements example. LightningChart comes with automatic axis placement) | Bas ewXY | Cartesian
options as well as possiblity to set the placement explicitly.

Figure 3-3. List view shows all examples without categorization.

#VVi LightningChart® | NET Interactive Examples

Open example VS project: | “Sgfect chart
> B> Cswer

Point Cloud A c Surface 0 ge Lo

Pomt cloud visuskization with SeriesPointCompactColoreddD Colors for ponts are cakculated using fuxed interval palette %
BB CoWPFMVWM

BB 2 WinForms
Point count
100000
Set data

Point size

[
|
weere
Depth m

Camera Orientation

ZXY_Extrinsic v

Projection type

Vertical rotation (i

side rotation (roll)

—— om

—

w Uightningch

Figure 3-4. An example has been opened. It can be extracted as a standalone project via the buttons within the highlighted
area.

30

LightningChart® .NET User’s Manual, rev. 10.5

3.2 User data statistics

LightningChart Ltd. collects anonymous user statistics from DevCenter and Interactive Examples to
improve our applications and to provide the best possible user experience in the future. The first time
these applications are run, a user agreement is represented. Regardless of the answer, this option can
be changed any time via DevCenter or Interactive Examples and does not affect the applications or the
charts anyhow. No user statistics from using the LightningChart itself is collected.

M Laghtrung(hart

@l User Agreement For Statistics

Arction Ltd. (manufacturer) requires your permission to
provide you the best developer-usage experience by
collecting anonymous data from the applications Interactive
Examples and DevCenter Windows.

Changes made in DevCenter will be applied to the
Interactive Examples the next time you will start it.

Continue and allow manufacturer to collect anonymous
data?.

Yes No

Figure 3-5. DevCenter requesting for user agreement to collect anonymous statistics.

Copyright LightningChart Ltd 2009-2023 31

4. License management

4.1 Adding license

Manage licenses by running the License Manager application from the Dev Center or from Windows
start menu: Programs / Arction / LightningChart .NET SDK / License Manager.

LightningChart components use a license key protection system. The components can be used only with
a valid license. License has information of:

e Enabled features, such as ViewXY, View3D, ViewPie3D, Maps, ViewPolar, ViewSmith, Volume
Rendering, Signal Tools

e WPF/WinForms / UWP / All platforms

e To how many users the license can be activated (1 as standard).

e Subscription expiry date (updates and support ending dates)

e Tech support inclusivity

e Per-developer license or Floating license

e Student license

When dragging a LightningChart component from Toolbox into an application the first time, a license
key is asked in a license manager window. Add the license key at from the received license file by
clicking Install license from file... and browsing the .alf file.

VY. LightningChart* | icense and subscription info

No development or trial license installed.
Please purchase and then install a development license using this tool.
Trial license is automatically installed on first time LightningChart{R) .NET is used.

Figure 4-1. License Manager when no license is installed. License file can be added via Install license from file.

Per-developer licenses are activated to LightningChart License Server over internet automatically after
adding the license file.

32

LightningChart® .NET User’s Manual, rev. 10.5

AV LghtningChart* | icense and subscription info

License Subscription

1D: XWH-36601

License is perpetual Subscription expires in 365 days
(Oct. 6th, 2021)

Deployment of application

nent rights Copy deployment key to clipboard

1n be used for releasing app

Developing UWP application n UWP d

C

Enabled Features

Features WinForms

ViewXY
View3D
ViewPie3D
ViewPolar
ViewSmith
Maps

SignalTocls

CLLKCCKRKE
CLCLCLKLE

VeolumeRendering

License installed and activated successfully. You are now able to use Lightning...

Figure 4-2. License Manager window after a license file has been added successfully.

If online activation is not possible due to for example internet connection being not available or the
connection being too slow, the licenses can be activated via e-mail as well. Request offline activation
button becomes available after the respective online action has failed one or two times. Deactivating
the license offline works similarly.

Copyright LightningChart Ltd 2009-2023 33

/‘\flf LightningChart® | jcense and subscription info AV Lightningchart® |jcense and subscription info

License Subscription License Subscription

Generate offline activation

Uninstall license

Retry online activation Contact support Uninstall license Contact support

License is perpetual Subscription expires in 359 days License is perpetual Subscription expires in 359 days
(Dec. 4th, 2020) (Dec. 4th, 2020)

Figure 4-3. Offline activation option available on License Manager after the online activation has failed.

Clicking the offline buttons gives on-screen instructions. Follow them to send an e-mail message to
LightningChart licensing team at licensing@lightningchart.com.

LightningChart will provide instructions how to install the license offline. Expect a reply in 2 business
days.

Note! Activation/deactivation over telephone is not available, as the key codes contain thousands of
characters.

Note! From LightningChart v.7.1 onwards, ChartManager component does not need a license key.

Note! From LightningChart v.8.0 onwards, LIC format license keys are not supported. ALF license is
needed. If you haven’t received ALF license, please contact our licensing team.

4.2 Removing a license

License can be removed from the system with Deactivate & uninstall button. Online connection is
required for automatic deactivation. If internet connection is not available, deactivation can be done via
e-mail as instructed in the previous chapter.

After the license has been deactivated, it can be installed on another computer.

34 LightningChart® .NET User’s Manual, rev. 10.5

mailto:licensing@lightningchart.com

AV Ligntningchart® | jcense and subscription infoll #¥!, Lightaingchart® | icense and subscription infol] #¥! Lightningchart® |icense and subscription info

License Subscription License Subscription License Subscription

1D: RIR-81791 ce : = D R 1D: RIR-81791
s .

‘ Deactive & uninstall ’

License is perpetual S ipti Uninstall license

License is perpetual ipti License is perpetual

Deployment of application

Figure 4-4. Deactivating and removing a license. If the online deactivation (on the left) fails, offline alternative (on the right)
becomes available.

4.3 Updating a license

After initial installation of license, it can still be updated, for example when subscription period is
extended, it is upgraded to better edition, or when source code is bought etc. NOTE, license is not
automatically updated on user’s machine. Therefore, each user should take action to ensure that
license on developer machine is up-to-date. To do that the old license has to be deactivated and
removed first (see the previous chapter “Removing a license” how to do this). Afterwards obtain the
new license key (.alf file) from the LightningChart’s customer portal. Then install it according to the
instructions on chapter 4.1 “Adding a license”.

Copyright LightningChart Ltd 2009-2023 35

4.4 Extracting Deployment Key

To be able to run LightningChart applications in computers the software is deployed into, a Deployment
Key has to be applied in code. Deployment Key can be extracted from a license key by pressing Copy
deployment key to Clipboard button.

Y. Uightningchart® | icense and subscription info

License Subscription

1D: XWH-36601

~ H

License is perpetual Subscription expires in 365 days
(Oxct. bth, 2021)

Deployment of application

Enabled Features r

Features
ViewXY
View3D
ViewPie3D
ViewPolar
ViewSmith
Maps
SignalTools

CLLLCLKKE
CLLLCLCKE

VolumeRendering

License installed and activated successfully. You are now able to use Lightning...

Figure 4-5. Copying the deployment key to clipboard in License Manager.

4.5 Applying Deployment Key in an application

In code, use static SetDeploymentKey methods for the wanted components. There is no need to set the
key for the components that are not used (i.e. setting key for bindable charts in a non-bindable
application). Call the SetDeploymentKey methods somewhere before the components need to be used.
The best place to call it would be static constructor of the class using the chart, or in the application’s
main class.

For more detailed instruction on deployment, see chapter 30.

36

LightningChart® .NET User’s Manual, rev. 10.5

WinForms

Here's an example how to apply the key at the static constructor method of the Program class that is

created by default for every WinForms application.

using System;

using System.Collections.Generic;

using System.Ling;

using System.Windows.Forms;

namespace WindowsFormsApplicationl

{

static class Program

{

static Program()

{

//Set Deployment Key for LightningChart components
string deploymentKey = "VMalgCAAO6ROIRgiNIBIABVcG.R. .Kikfd...";

Arction.WinForms

.Charting.LightningChart.SetDeploymentKey(deploymentKey);
Arction.WinForms.
Arction.WinForms.
Arction.WinForms.
Arction.WinForms.
Arction.WinForms.
Arction.WinForms.

SignalProcessing.SignalGenerator.SetDeploymentKey (deploymentKey);
SignalProcessing.AudioInput.SetDeploymentKey(deploymentKey);
SignalProcessing.AudioOutput.SetDeploymentKey (deploymentKey);
SignalProcessing.SpectrumCalculator.SetDeploymentKey (deploymentKey);
SignalProcessing.SignalReader.SetDeploymentKey (deploymentKey);
SignalProcessing.FilterRoutines.SetDeploymentKey(deploymentKey);

Arction.CustomControls. Trader.WinForms. TradingChart.SetDeploymentKey(deploymentKey) ;

}

// Rest of the class

Copyright LightningChart Ltd 2009-2023 37

PF

Here’s an example how to apply the key in the beginning of App.xaml.cs, at the static constructor of the

App class.

using
using
using
using
using
using
using

System;

System
System
System
System
System

.Collections.Generic;
.Configuration;
.Data;

.Ling;

.Windows;

Arction.Wpf.SignalProcessing;

namespace WpfApplicationl

{

/// <summary>

/// Interaction logic for App.xaml

/// </summary>

public partial class App : Application

{

static App()

// Set Deployment Key for LightningChart components
string deploymentKey = "- DEPLOYMENT KEY FROM LICENSE MANAGER
GOES HERE-";

// Setting Deployment Key for bindable chart
Arction.Wpf.ChartingMVVM. LightningChart
.SetDeploymentKey(deploymentKey);

// Setting Deployment Key for non-bindable chart
Arction.Wpf.Charting.LightningChart
.SetDeploymentKey(deploymentKey);

// Setting of deployment key to other LightningChart components
SignalGenerator.SetDeploymentKey(deploymentKey);
AudioInput.SetDeploymentKey(deploymentKey);
AudioOutput.SetDeploymentKey(deploymentKey);
SpectrumCalculator.SetDeploymentKey(deploymentKey);
SignalReader.SetDeploymentKey(deploymentKey);
FilterRoutines.SetDeploymentKey(deploymentKey);

// Setting Deployment Key for trading chart
Arction.CustomControls.Trader .WPF.TradingChart
.SetDeploymentKey(deploymentKey);

In UWP application, it is possible to use either developer key or deployment key, but not both together.
Use developer key when developing and debugging the app and deployment key when deploying it.

Note! Without setting Deployment Key in the application, LightningChart enters into 30 days trial mode

in the target machine (applies to computers where a Development license key hasn’t been installed).

38

LightningChart® .NET User’s Manual, rev. 10.5

4.6 Running with Deployment Key on development computer

When running an application, in which a deployment key has been applied with SetDeploymentKey, on
a computer where a development license has been installed to, the library prioritizes the development
license key. It might lead into user or debugging confusion when deployment key has higher level of
featuresincluded (e.g. Gold pack) than locally installed license (e.g. Silver pack). Developer must be aware
of this limitation.

LightningChart Ltd. recommends all licenses to be of same type within the whole team.

4.7 Running with debugger

With Deployment Key set correctly, when running the project from Visual Studio with debugger attached,
and no development license key is found from the system, the chart enters slow rendering mode, max
FPS is ~1, and the chart shows message text over the chart.

Direct developing and debugging with LightningChart without developer license key, is forbidden by
LightningChart EULA.

4.8 Trial period

The trial period is usable for 30 days. After that, a license must be purchased to continue using the
product. All projects built with a trial license will work also after updating to proper license. A trial
version nag message will be shown when running the chart application built with a trial license.

4.9 Floating licenses

Floating licenses can be installed to unlimited count of computers. Number of concurrent developers
has been configured by LightningChart Ltd. Only the purchased count of concurrent users can develop
with LightningChart at same time. After a developer finishes LightningChart development, there’s about
10-15 minutes timeout until another developer can start using it.

Deployment key must be set similarly than with per-developer licenses.

Floating licenses are controlled by LightningChart Licensing Server by default. Continuous internet
connection is required while developing.

Customer-side floating license controller is also available. Development computers connect to a service
running in customer’s organization via local area network. On-line communication with LightningChart
Ltd. or other parties doesn’t take place. With licenses, LightningChart Ltd. provides separate instructions
for installing the controller service and floating licenses.

Copyright LightningChart Ltd 2009-2023 39

5. LightningChart component

5.1 Using LightningChart® .NET libraries

In order to use LightningChart® .NET components, Arction .dll -files have to be added to references.
These can be found in the installation folder. The following assemblies are required when developing
an application:

Winforms: Arction.WinForms.Charting.LightningChart.dll.

WPF Non-bindable: Arction.Wpf.Charting.LightningChart.dll
Arction.DirectX.dll
Arction.RenderingDefinitions.dll

WPF Bindable: Arction.Wpf.ChartingMVVM.LightningChart.dll
Arction.DirectX.dll
Arction.RenderingDefinitions.dll

UWP Chart: Arction.Uwp.ChartingMVVM.LightningChart.dll
Arction.Uwp.RenderingDefinitions.dll
Arction.Uwp.RenderingEngineBase.dll

If using SignalTools: Arction.WinForms.SignalProcessing.SignalTools.dll or
Arction.Wpf.SignalProcessing.SignalTools.dll or
Arction.Uwp.SignalProcessing.SignalTools.dll

If the above references are added, building the project will automatically copy all the required
assemblies to the output folder. Chapter 28 shows what assemblies are needed when deploying a
LightningChart application.

Arction.DirectXFiles.dll is not automatically included as reference, as it is a large file which can increase
the initialization time. It is only needed when there are no correct DirectX assemblies already in the
system. Arction.DirectXInit.dll routines check the existing dlls and loads them when necessary. When

loaded once, it writes the DirectX-dlls into Windows temp folder where LightningChart can access them

in the future, thus making the initialization fast.

We recommend not to include Arction.DirectXFiles.dll as reference, instead, copy it next to your exe.

40 LightningChart® .NET User’s Manual, rev. 10.5

5.2 Creating chartin code

LightningChart component can be added by either dragging it from the toolbox or by creating it
completely in code behind. Creating the chart object in code has the advantage of allowing easier
version updates. Furthermore, it can avoid some (de)serialization related issues.

The following demonstrates one way to create a WPF non-bindable chart in code behind (.xaml.cs -file).

using Arction.Wpf.Charting;

namespace ExampleProject
{
public partial class ExampleApp : Page
{
private LightningChart chart = null;

public ExampleApp ()
{

InitializeComponent () ;

CreateChart () ;
}

private void CreateChart ()
{
_chart = new LightningChart();

// Chart control into the parent container.
(Content as Grid) .Children.Add(chart);

// Disable rendering until the whole chart is set up correctly.
_chart.BeginUpdate() ;

// Configure chart here.

// Allow rendering the chart.
_chart.EndUpdate () ;

Copyright LightningChart Ltd 2009-2023 41

5.3

Adding from toolbox into Windows Forms project

Add LightningChart control from the toolbox into the form. The chart appears in the form and its

properties are shown in Properties window.

Properties vyax
lightningChartUltimate1 Arction.WinForms ~

8y |99

Title

VerticalScrollBars (Collection)
View3D 3D chart view
ViewPie3D 3D pie/donut view
ViewPolar Polar chart view
ViewSmith Smith chart view
B ViewXY XY chart view

Annotations (Collection)
AreaSeries (Collection)
AutoSpacelegen False

AxisLayout

Bands (Collection)
BarSeries (Collection)
BarViewOptions
ChartEventMark (Collection)
Constantlines (Collection)
DropOldEventM: False

DropOldSeriesDa False fp et peny

ViewXY H 3 5
XY graph view i X axis title

Figure 5-1. LightningChart control added into Windows Forms designer.

5.3.1 Properties
The properties can be modified freely. Also, new series and other objects can be inserted in their
collections. Series data points must be given by code.

5.3.2 Event handlers
Event handlers of the chart main level can be assigned with the property grid. For objects that have
been added to the collections, events handlers must be assigned in code.

5.3.3 Best practices conserning version updates
Chart property data is serialized in .resx file in the Visual studio project. LightningChart API tends to
change a little bit with version updates which may lead into incompatible serialization for the new
version to exist in the .resx file.

42 LightningChart® .NET User’s Manual, rev. 10.5

For easier version updates, it’s strongly recommended to create the chart object, add all series, event
handlers etc. in code. The project then loads correctly and possible errors are shown in the compile
time making it easy to fix them compared to fixing .resx file. With .resx file, some property definitions
may be lost, but in code, they are always specified.

5.4 Adding from toolbox into WPF project

Add LightningChart Bindable WPF control from the toolbox to Window or another container. The chart
appears in the designer and its properties are shown in Properties window. XAML editor shows the
contents and modifications to the chart default properties.

5.4.1 Properties

The properties can be modified freely, and new series and other objects can be inserted into their
collections. Series data points must be given in code.

5.4.2 Event handlers

Event handlers of the chart main level can be assigned with the property grid. For objects that have
been added to the collections, events handlers must be assigned in code.

Copyright LightningChart Ltd 2009-2023 43

Properties ~ 1 X Pagelaaml®
. Name <NaName> N
Type LightningChartUltimate

MainWindow

(ViewSmith)
(ViewXy)
(Collection)
(Collection)

en.. ll
(AxisLayout)
(Collection)

BarSeries (Collection)

z z zl=
& & afla
2 2 ES B E

b BarViewOptions ~(BarViewOptions)
b Border (ThinBorderXY)
ChartEventMarkers (Collection)

Constantlines {Collection)

b GraphBackgro.

HighlowSeries {Collection)
IntensityGridSeries (Collection)
IntensityMeshSer... (Collection)
LegendBoxes (Collection)
LineCollections {Collection)
LineS: (Collection)

- EllcusbiLightningChartUltimate
b Maps (Map)

]
.
.
.
I
]
.
I
]

Margins « 80

o

+30
PointlineSeries {Collection)
P Series (Collection)

leDataSeries (Collection)
StockSeries (Collection)
b TitlesAutoPlac... (Autolab
XAxes (Collection)
Yies (Collection)

z
a
2

O m m OO0 o0

z
a
2

b ZoomPanOpti... (ZoomPanOptions)
v 100% -

Figure 5-2. LightningChart control added into WPF designer.

5.5 Adding into Blend WPF project

In Projects tab, go to References. Right-click and select Add reference.. Browse
Arction.WPF.Charting.LightningChart.dll from c:\program files (x86)\Arction\LightningChart .NET SDK
v.10\LibNet4.

Go to Assets tab. Write “Lightning” in the Search box. LightningChart row can be found in the search
results. Drag-drop the object into the WPF window.

44 LightningChart® .NET User’s Manual, rev. 10.5

- = — =
o4 WofApplicationd.sin - Blend for Visual Studio 2013 =

htningChartuiimate

B LghningChartutimate:

i | 1 i i
0000 0001 0002 00:03 0004 0005 0006 0007 O0O08 0009 0C10

i dow”
idth="1436.716" Height="915.821">

<Grid x:Name="LayoutRoot” Background="white">
<localiMainView />
<leu:LightningChartultinate Content="LightningChartUltimate” Horizontalslignment="Left” Margin="259.671,155.164,8,4
<leu:LightningChartUltinate. Viewky>
<lusviewxy>
<leu:ViewXY.GraphBackgrounds|
<leu:Fill Color="#FF6E2402" GradientFill="Radialstretched”/>
</leu:ViewXy. GraphBackground>
JVienys

Figure 5-3. LightningChart control added into Blend For Visual Studio 2013 designer.

5.5.1 Best practices conserning version updates

Chart property data is stored in XAML. New versions may have slightly different property set, which
can cause the LightningChart object not to appear in the designer. Relevant XAML modifications are
then needed. The XAML tags tree may be huge and editing it may be quite difficult.

For easier updates, it’'s strongly recommended to create the chart object and set its layout and
alignment relevant properties in designer. Set everything else in code. Alternatively, create the chart
object in code as well.

5.5.2 Preventing blurring of the chart

This is a common feature of WPF and not related to the chart itself but becomes clearly visible in
accurate rendering of LightningChart.

To prevent the chart to appear blurred, set UseLayoutRounding = True of the control that is parent
to the chart. The chart may still appear blurred in the designer but will look sharp when running the
application. The parent control can be for example Grid, Canvas, DockManager etc.

Copyright LightningChart Ltd 2009-2023 45

5.6 Creating UWP projects

5.6.

Using LightningChart in UWP works similarly to bindable WPF chart as it has similar binding and MVVM
capabilities. As with bindable WPF chart, the collection properties of UWP charts (such as ViewXY axes,
3D lights) are empty by default. Windows 10 and Visual Studio 2017 onwards are required to develop
UWP applications with LightningChart. Universal Windows Platform development workload should also
be installed on Visual Studio, including the following:

- Microsoft.NETCore.UniversalWindowsPlatform: 6.2.8 or later (Nuget package).
- Microsoft.Toolkit.Uwp: v 4.0.0 or later, 6.0.0 or later recommended. Note that the latest
toolkits may not be compatible with earlier target versions.

1 Creating a UWP application

Follow these steps to create a UWP application utilizing LightningChart:

1. Create a new project with Visual Studio. Select Blank App (Universal Windows).

2. Give the project a name and file location.

3. Set Target and Minimum versions for the project. What versions are available depends on what
SDKs have been installed on the machine. For further information see Microsoft’s documention:
https://developer.microsoft.com/en-us/windows/downloads/sdk-archive/. Version 16299 or
above is recommended. Note that these can be changed later via Project -> Properties.

Mew Universal Windows Platform Project x

Select the target and minimum platform versions that your UWP application will support.

Target version: Windows 10, version 2004 (10.0: Build 19041) e

o _ Windows 11 (10.0: Build 22000)
Minimum version: |Windows 10, version 2104 [10.0; Build 20348)

Windows 10, version 2004 (10.0; Build 19041)
Windows 10 Fall Creators Update (10.0; Build 16299)

Which verzion should | choose? Cancel

Figure 5-4. Selecting Target and Minimum versions for UWP.

4. When using Target version 2004 or newer, TypelnfoReflection setting should be disabled. Open the
.csproj project file for instance in a text editor and add the following line to each PropertyGroup
defining a build condition (Debug|x86, Release | x86 etc.):
<EnableTypeinfoReflection>false</EnableTypelnfoReflection>

5. Add LightningChart and SharpDX assemblies to references. By default, these can be found in
C:\Program Files (x86)\Arction\LightningChart .NET SDK v.10\LibUWP. Note that the same UWP

46

LightningChart® .NET User’s Manual, rev. 10.5

https://docs.microsoft.com/en-us/windows/uwp/updates-and-versions/choose-a-uwp-version

assemblies work for x86, x64, Arm and Arm64 platforms. The target platform can be changed by
right-clicking the project and selecting Properties -> Build -> Platform target.

4 7§ References

1

o0 Arction.Uwp.ChartinghMVVM.LightningChart

o-B Arction.Uwp.Licensing

u-B Arction.Uwp.RenderingDefinitions
u-B Arction.Uwp.RenderingEngine

5-B Arction.Uwp.RenderingEngineBase
u-0 SharplX

o-B SharpDX.D30Compiler

5-B SharpDX.Direct2D1

o-B SharpDX.Direct3011

u-B Sharp[iX

u-B SharpDi.Mathematics

-0 Uwphttributes

Figure 5-5. UWP assemblies added to the project references.

Install Microsoft.Toolkit.Uwp NuGet package to your project. Version 6.0 or newer recommended.

UWP requires developer key to be set in the application. Extract the key from LicenseManager via

“Copy UWP developer key to clipboard” button, then set it in App.Xaml.cs file by using

LightningChart.SetUwpDeveloperKey() method.

AV Uightningchart® | icense and subscription info

License Subscription

1D: XWH-36601

W y

License is perpetual Subscription expires in 365 days
(Oct. 6th, 2021)

Deployment of application

can be used for releasing

Copy UWP developer key to clipboard
key

Uwp WPF
v v
v v
v v
v v
v v
v v
v v
v v

Enabled Features

Features
ViewXY

WinForms

View3D
ViewPie3D
ViewPolar
ViewSmith
Maps
SignalTools

VolumeRendering

License installed and activated successfully. You are now able to use Lightning...

Figure 5-6. Using LicenseManager to copy UWP developer key

to clipboard.

Copyright LightningChart Ltd 2009-2023

47

Arction.Uwp.ChartingtVvvi;

ExampleProject

t.SetUwpDeveloperkey ("

.InitializeComponent();
.Suspending += OnSuspending;

Figure 5-7. Setting the UWP developer key in App.Xaml.cs file.

8. Itis now possible to create LightningChart components in code or in xaml editor. For example,
creating a UWP chart in code:

using Arction.Uwp.ChartingMvVvM;

namespace ExampleProject
{

public sealed partial class MainPage : Page

{
private LightningChart chart = null;

public MainPage ()
{

InitializeComponent () ;

CreateChart () ;
private void CreateChart ()
{

_chart = new LightningChart();

// Chart control into the parent container.
(Content as Grid) .Children.Add(chart);

// Disable rendering until the whole chart is set up correctly.
_chart.BeginUpdate () ;

// Configure chart here.

// Allow rendering the chart.
_chart.EndUpdate () ;

48 LightningChart® .NET User’s Manual, rev. 10.5

9. Build, deploy and run the application. In case of app not running (for instance due to “Activation of
the Windows Store app...” error), often changing Target and Minimum versions helps.

10. When deploying a UWP application to other machines, deployment key should be applied (see
chapter 4.4). Deployment key cannot be used together with development key. Therefore, remove
setting the developer key before deploying.

5.6.2 UWP troubleshooting

UWP projects have some known issues. These are often not related to LightningChart but to UWP in
general. Therefore, searching additional information from web is recommended. In any case, don’t hesitate
to contact support (support@lightningchart.com) if you have any questions.

Some known UWP issues:

-Version 1903 not working. Might give error such as Build error MSB4166: Child node "2" exited prematurely

This is a known issue specific to 1903. The best fix is to simply use different target version. Microsoft
recommends targeting version 2004 (build 19041) instead.

-Release build not working.

Try disabling Compile with .NET Native tool chain via project’s Properties -> Build

-Debug build not working

In some UWP versions, for instance version 2004, debug build might not run giving error: Run Error: an
unhandled win32 exceptio occurred in [3088] (number is different for different build). In these cases, make
sure you have added <EnableTypelnfoReflection>false</EnableTypelnfoReflection> line to you csproj file.
Alternatively, try using release build instead.

-Activation of Windows Store App ‘App name’ failed.

Try cleaning the solution. Delete bin and obj folders and rebuild as instructed here:
https://docs.microsoft.com/en-us/previous-versions/hh972445(v=vs.140)?redirectedfrom=MSDN

Copyright LightningChart Ltd 2009-2023 49

mailto:support@lightningchart.com
https://docs.microsoft.com/en-us/previous-versions/hh972445(v=vs.140)?redirectedfrom=MSDN

5.7 Object model

The best way to learn the object model of LightningChart is by using Properties editor of Visual Studio.

Properties * A X
& Name <Mo Name:> F ¥
Type LightningChartUltimate
Search Properties P
Arrange by: Category ~
I Brush
P Appearance
P Common
I Layout
I Text
P Transform
b Miscellaneous
4 Chart
ActiveView [Viewxy ~|o
Background u}
b ChartBackground (Fill [New |o
ChartManager I:|
ChartName [}
P ChartRenderOp... (RenderOptionsComm... I:|
ColorTheme | Drark "|E|
EffectAnimatar [}
HorizontalScrollBars (Collection) IIID
b Options (ChartOptions) E|
b Title (ChartTitle) [New |o
VerticalScrollBars (Collection) IIID
b View3D (View3D) [New |o
P ViewPie3D (ViewPie3D) I:|
P ViewPolar (ViewPolar) I:|
b ViewSmith (ViewSmith) [New |o
b ViewXy [Viewy) [New |o

Properties

*Ox

lightningChartUltimate1 Arction.WinFarms. Charting.LightningChartUltim: -

0|0 £ |

Activeliew
Background
ChartlManager
ColarTheme
EffectAnimatar
HarizontalScrollBars
Optians
RenderOptions
Title
Wersion
WerticalScrollBars
WiewiD
ViewPieiD
WiewPalar
WiewSmith
WiewXy
Data

Chart

OEHEHHBEBH

WiewXy

{none)
Dark

{Collection)
Arction.WinForms.Charting.(

LightningChartUltimate v.2.0.
{Collection)

3D chart view

3D pie/donut view

Polar chart view

Smith chart view

XY chart view

Figure 5-8. LightningChart specific properties can be found under Chart category in both Windows Forms and WPF Properties

window. By expanding the nodes, or in WPF creating new objects, a huge set of properties can be seen.

50

LightningChart® .NET User’s Manual, rev. 10.5

5.7.1 Differences between Windows forms, WPF and UWP

The property tree and object model between Windows Forms and WPF are almost identical, regarding

the Chart category. The main differences are:

Windows Forms WPF uwp
Rendering RenderOptions ChartRenderOptions ChartRenderOptions
options
property
Background Background ChartBackground ChartBackground
fill property
Fonts System.Drawing.Font Arction.WPF.LightningChart. Arction.Uwp.ChartingMVVM.
WPFFont UwpFont
Colors System.Drawing.Color System.Windows.Media.Color Windows.Ul.Color

Table 5-1. Differences between Windows forms, WPF and UWP.

In the following chapters, Windows Forms property names are referred unless otherwise denoted.

5.8 LightningChart Views

LightningChart has the following main views:
- ViewXY (see chapter 6)

- View3D (see chapter 7)

- ViewPie3D (see chapter 9)

- ViewPolar (see chapter 10)

- ViewSmith (see chapter 11)

The visible view can be changed by setting ActiveView property. The default view is ViewXY.

// Set 3D as the visible view
chart.ActiveView = ActiveView.View3D;

5.9 View and zooming area definitions

LightningChart views contain several various areas determined by the information they hold. The areas

can be seen as two-dimensional rectangles based on the content of the view. These definitions are

Copyright LightningChart Ltd 2009-2023

51

uniform regardless of the view type. They are used especially in zooming operations to determine
which areas of the chart will be shown.

-ChartArea/ViewArea: The whole area including the chart and the margins.
-MarginRectangle: MarginRectangle (or MarginRect) includes the area inside the margins.

-GraphArea: The area defined by the axis ranges. Contains major and minor grids. The data is drawn in
this area, unless some data values exceed the axis ranges.

-Background area / circle: Is mostly the same as the GraphArea. Contains also the parts of the graph
outside the axis ranges and the grids.

-LabelsArea: The area consisting of the graph and the axis labels. Ignores the data.

-Data: The area containing only the data. Defined by the minimum and the maximum values of the
data.

-DataAndLabelsArea: Data and LabelsArea combined. All data, axes, labels and markers are included.

-Border: A customizable, one-pixel wide rectangle, which indicates the location of the margins. Its
visibility can be changed by disabling/enabling it.

-Margins: Margins are empty spaces around the graph area. Most of the contents of the view are fitted
inside the margins and clipped outside them.

-ZoomPadding: The space left between the margins and another, pre-defined area after a zooming
operation (see chapter 7.19.3). It has no effect in ViewXY.

ChartArea / ViewArea

<A h . ly, tent: Jipped Margins.Top
e e R A } Border - 1 px wide border indicating the margins

MarginRect - Area inside the margins }ZoomPadding. Top

LabelsArea - Area containjngithe

M ZoomPadding.Right

ZgomPadding.Left

Margins.Left
O
Margins Right

: /’ !
7Z _______________________________ i

| DataAndLabelsArea
- Contains all data, labels, axis|etc.

ZoomPadding.Bottom

}»Margins,Bottom

Figure 5-9. View and zooming area definitions

LightningChart® .NET User’s Manual, rev. 10.5

5.10 Setting background fill

All views have a common background fill.

e Use chart.Background in WinForms.
chart.Background.Color = Color.DarkBlue;
e Use chart.ChartBackground in WPF.

chart.ChartBackground.Color = Colors.DarkBlue;

The background fill supports:

e Solid color fills. Set GradientFill = Solid and use Color to define the color.

e Gradient fills, going from Color to GradientColor. Set GradientFill = Linear / Radial /
RadialStretched / Cylindrical. Use GradientDirection to control the fill direction in Linear and
Cylindrical gradients.

chart.ChartBackground.GradientFill = GradientFill.Cylindrical;
chart.ChartBackground.GradientColor = Colors.Black;
chart.ChartBackground.GradientDirection = -45;

e Bitmap fills, with different tiling and stretching options. Bitmap tint and alpha also are
supported to, to make translucent bitmap fills.

| [PointLineSeries chart] {Arction.WinForms Charting. LightningChart Utimate ~

=

v Chart ~
ActiveView View XY

v

v Bitmap

LightningChartUltimate

Image [tnoney
ImageAlpha 255
Image TintCalor 1 White
Layout Center
Bitmap Smaothing Linear ©
Color I DimGray =
GradientColor Il Black "
GradientDirsction 45 =
GradientFill Solid >
Style CalorOnly
ChartManager (none)
ColorTheme Dark
» EffectAnimator
Horizortal Scroll Bars (Collection)
» | Options
OutputStream
» RenderOptions
> | Title v

Background fill
X axis title

Figure 5-10. Setting Background background, underneath ViewXY. GradientFill = Solid, and Color = DimGray.

Copyright LightningChart Ltd 2009-2023 53

Figure 5-11. Setting Background to gradient cylindrical, under View3D.GradientFill = Cylindrical, Color = Maroon,
GradientColor = Black. GradientDirection = -45 degrees.

! ‘r‘;-}’

FLpggng ‘i"%‘
Q

0 2o s it | 4

Figure 5-12. Setting Background to tiled bitmap fill. Style = Bitmap, a picture set to Bitmap.Image, and Bitmap.Layout
= Tile, under ViewPolar.

54

LightningChart® .NET User’s Manual, rev. 10.5

5.10.1 Setting transparent background

In WPF, the chart can be made appear transparent, so the objects placed underneath the chart will

show through.

Tabltem | Tabltem

LightningChartUltimate

Figure 5-13. Transparent background in WPF chart.

Set ChartBackground.Color = #00000000 (Black transparent).

Note! Do NOT set ‘Transparent’ (#OOFFFFFF). It won’t show through.

WinForms does not support transparent background of controls.

Copyright LightningChart Ltd 2009-2023 55

5.11 Configuring appearance / performance settings

ChartRenderOptions (RenderOptions in WinForms) contain properties for configuring appearance and

performance.
ArttiMias Level 4
D2DEnabled True
DeviceType Auto
FortsCuality Mid
ForceDeviceCreateOnResize Falge
FrameRate Limit 40
GPUPreference PreferHighPerformanceGraphics
HeadlessMode Falge
InvokeRenderingn U Thread False
LineAAType2D ALAA
LineAATypedD GILAA
LineOffset
Remote DesktopWendaorld 0
lUpdateOnResize True
lpdateOnResize Time Interval 1000
Update Type Sync
w ViewXY

GDILineSeresCompression True

LineSeriesEnhanced Antifliasing Off
WaitFor'Sync False

Figure 5-14. RenderOptions properties.

DeviceType

// Changing the rendering device in code
chart.ChartRenderOptions.DeviceType = RendererDeviceType.Auto;

Auto is an alias to AutoPreferD11 option. This is the default setting.

AutoPreferD9 prefers DirectX9 hardware rendering, and automatically selects device in this
order: HW9 -> HW11 -> SW11 -> SW9 based on availability. Falls back to WARP (SW11)
software rendering when hardware is not available.

AutoPreferD11 prefers DirectX11 hardware rendering, and automatically selects device in
this order: HW11 -> HW9 -> SW11 -> SW9 based on availability. Falls back to WARP (SW11)
software rendering when hardware is not available. Use this as a general high-performance
and best appearance setting. Visual appearance is better than with DirectX9 renderer.

HardwareOnlyD9 uses hardware 9 rendering only.

56

LightningChart® .NET User’s Manual, rev. 10.5

HardwareOnlyD11 uses hardware 11 rendering only.

SoftwareOnlyD11 uses DirectX11 WARP, very fast when compared to DirectX9 reference
rasterizer, but slower than hardware options)

SoftwareOnlyD9 uses DirectX9 reference rasterizer (very slow)

None if chart is hidden, or inactive in background, setting DeviceType to None will free
graphics resources to other charts.

GPUPreference

chart.ChartRenderOptions.GPUPreference = GPUPreference.SystemSetting;

A selection applicable to machines with dual graphics adapter systems, mainly laptops having
integrated low-performance Graphics Processing Unit (GPU) in the CPU/chipset, and higher
performance graphics GPU (e.g. AMD or Nvidia).

SystemSetting uses options selected in the graphics settings of Windows, or AMD or Nvidia
control panel.

PreferHighPerformanceGraphics uses high-performance GPU if it exists in the system. Gives
better performance in general but may lead into higher energy consumption.

PreferLowPowerGraphics uses slower integrated GPU, even if high-performance GPU has
been installed on the system.

By default, PreferHighPerformanceGraphics is the preferred option. Keep it selected to get
the best performance.

FontsQuality
chart.ChartRenderOptions.FontsQuality = FontsRenderingQuality.High;

Low gives best performance, the fonts are not anti-aliased. Select font typeface carefully to
get acceptable appearance.

Mid gives almost similar performance than Low. Has simple anti-aliasing around the fonts. This
is the default setting.

High gives best appearance but has a significant performance hit.

Note: Transparent background is not applicable for DirectX 11 rendering with High quality
setting. For DirectX9 it works. This is a rendering technology limitation.

Copyright LightningChart Ltd 2009-2023 57

AntiAliasLevel
chart.ChartRenderOptions.AntiAliasLevel = 1;

The overall scene anti-aliasing factor. Availability depends on the hardware. Higher values
give better appearance, but with reduced performance. Set 0 or 1 to maximize the
performance. See chapter 5.13 for more information on available anti-aliasing settings.

WaitForVSync
chart.ChartRenderOptions.WaitForVSync = true;

Recommendation: keep as default value. When enabled, holds rendering until display's next
refresh is taking place (e.g. next multiple of 1/60 s). Only recommended temporarily e.g. when
synchronization with external screen capture application is used to prevent striping, or when
image on the screen in top of the screen is not in sync with bottom of the screen. It may show
as broken waveform data. Significant performance hit when enabled, especially in WPF.

UpdateType

chart.ChartRenderOptions.UpdateType = ChartUpdateTypes.Sync;

Sync (default): Chart is updated synchronously. Chart gets updated either after the last
EndUpdate() call, or when setting a property (or calling a method) causes some changes in the
Chart. Property change (without BeginUpdate...EndUpdate) leads to immediate new frame
rendering.

Async: Chart is updated on async fashion. The chart will update as fast as possible after
property changes, but chart will render a new frame at some later point. This might make it
easier to use chart on some cases.

LimitedFrameRate: Frame rate is limited to value specified in FrameRateLimit property. 0 =
unlimited. E.g. if max. 10 refreshes / second is wanted, set 10. This is similar to the Async
option but prevents new frames to be rendered right after first one, thus reducing framerate,
but sparing system resources.

Note! Ensure correct thread handling also in LimitedFrameRate and Async modes. If chart
updates asynchronously, and chart properties are updated at the same time, a conflict may
occur and crash the chart or application.

InvokeRenderinginUIThread

chart.ChartRenderOptions.InvokeRenderingInUIThread = true;

LightningChart® .NET User’s Manual, rev. 10.5

When using a background thread in the application, all Ul updates from the thread must go
through Invoke (Control.Invoke() in WinForms, and Dispatcher.Invoke() in WPF).

The rendering part will use internal Invoke to Ul thread, when enabled.

The default value is False, as setting properties and calling methods in a thread-safe way
should also be take care of, even when this property is enabled, to prevent thread collision in
internal states of the chart.

HeadlessMode

chart.ChartRenderOptions.HeadlessMode = true;

Setting this to True allows using the chart in a background service, console application or
other application without user interface. See chapter 25.

5.12 DPI handling

By default, WPF applications are DPI (Dots Per Inch) aware whereas WinForms apps are not. Also, DPIs
are used instead of pixels to measure sizes. LightningChart does not support per-monitor DPI
awareness but does system awareness, meaning that WPF apps are DPI system aware. Default DPI in
WinForms is 72, but it is worth noting that if wpf .dll files are loaded, the value changes to 96.

Howevere, LightningChart will not automatically resize when moved to another screen with different
DPI settings. To enable resizing, AllowDPIChangelnduceWindowsResize property under ChartOptions
needs to be set true. Alternatively, user can register to OnDPIChanged event and change its
allowWindowResize attribute. These have no effect in WinForms.

// Enabling automatic resizing
chart.Options.AllowDPIChangeInduceWindowResize = true;

// Via OnDPIChanged -event
chart.OnDPIChanged += chart OnDPIChanged;

private void chart OnDPIChanged(LightningChart chart, float dpix, float dpiy,
ref bool allowWindowResize)

{

allowWindowResize = true;

Copyright LightningChart Ltd 2009-2023 59

5.12.1 DpiHelper class

LightningChart has DpiHelper class, which contains helpers on DPI related issues.

DpiAware states if the system process is DPI aware or not. However, it is currently not possible to
distinguish between system aware and per-monitor aware.

bool isDPIAware = DpiHelper.DpiAware;

DpiXFactor/ DpiYFactor is an effective Zoom factor of the system DPI of the screen width/height.
Factor that describes how many real pixels there are per one DPI in X/Y direction.

float dpiXFactor = DpiHelper.DpiXFactor;

DipToPx and PxToDip methods convert DIPs to pixels and vice versa using system DPI settings. They can
convert single points or pixels, or alternatively the size and the position values of a rectangle.

double pixelValue = DpiHelper.DipToPx (dipValue) ;

5.13 Anti-Aliasing

LightningChart® .NET supports anti-aliased rendering. It can be applied for objects having AntiAliasing-
property. With anti-aliasing, lines etc. can be rendered with smoothened edges, resulting in a more
polished graphical representation, but with a performance cost as it increases the CPU/GPU overhead.

5.13.1 Enabling Anti-Aliasing

Anti-aliasing can be controlled through AntiAliasing-property, which is set via a boolean value or
LineAntialias-enumeration depending on the related component. For the latter, there currently are
two options available:

LineAntialias.None; No anti-aliasing
LineAntialias.Normal; Anti-aliasing

seriesEventMarker.Symbol.Antialiasing = true;

pointLineSeries.LineStyle.AntiAliasing = LineAntialias.Normal;

60

LightningChart® .NET User’s Manual, rev. 10.5

Anti-aliasing is also affected by chart’s AntiAliasLevel. It is a factor defining the applied anti-aliasing
mode based on the selected rendering engine (DirectX9 and DirectX11). Setting anti-aliasing level to 0
or 1 will result into no anti-aliasing to be applied on rendering even if the AntiAliasing-property for the
individual components is set to true or LineAntialias.Normal.

AntiAliasLevel can be set through chart’s rendering options:

// Anti-aliasing factor. Values 0 and 1 result into no anti-aliasing applied.
chart.ChartRenderOptions.AntiAliasLevel = 2;

Without setting the value manually AntiAliasLevel defaults to 4.

5.13.2 DirectX11 Anti-Aliasing

On DirectX11 there are a couple of common features, which should be taken into account, when
rendering with anti-aliasing:

e Setting AntiAliasLevel overrides the AntiAliasing-property if set to a value greater than 1,
meaning that the rendering will be done using anti-aliasing even if the AntiAliasing-property
has been set to be false or LineAntialias.None. The only exception of this is if
LineOptimization.Hairline is applied (only available with 3D rendering).

e LineAntiAliasType can be used to choose whether alpha-blending (ALAA)- or quadrilateral anti-
aliasing (QLAA) is used:

LineAntiAliasingType.ALAA; Alpha-blending anti-aliasing.
LineAntiAliasingType.QLAA; Quadrilateral anti-aliasing.

chart.ChartRenderOptions.LineAAType2D = LineAntiAliasingType.ALAA;

RasterizerStateDescription’s IsMultisampleEnabled and IsAntialiasedLineEnabled settings also affect
the QLAA and ALAA rendering in following way (only applicable for line rendering):

e If RasterizerStateDescription.IsMultisampleEnabled == true, QLAA is used.

o If RasterizerStateDescription.IsMultisampleEnabled == false, ALAA is used.

o If RasterizerStateDescription.IsAntialiasedLineEnabled == true, ALAA is used, this has only
effect if also RasterizerStateDescription.IsMultisampleEnabled == false.

NOTE! On 3D rendering with DirectX11, all triangle lines are always rendered with anti-aliasing unless
the AntiAliasLevel is set to 0 or 1.

Copyright LightningChart Ltd 2009-2023 61

6. ViewXY

ViewXY allows presenting various point-line series, area series, high-low series, intensity series, heat
maps, bar series, bands, line series cursors etc. in Cartesian, XY graph format. Series are bound to X and
Y axes, and they are using the value range of the assigned axes.

ViewXY can also show geographical maps, see chapter 6.31.

XY chart view
Annotations (Collection)
AreaSeres (Collection)
AutoSpacelegendBoxes Falze
AuisLayout
Bands (Collection)
BarSeries (Collection)
Bar'iewOptions
Border Border
ChartEventMarkers (Collection)
ConstantLines (Collection)
DropQldEvent Markers False
DropQld SeresData False
FreeformPoint Line Series (Collection)
GraphBackground
HighLowSeries {Collection)
IntensityGridSeries {Collection)
Intensity MeshSeries {Collection)
LegendBoxes {Collection)
LineCollections {Collection)
LineSeresCursors {Collection)
Maps
Margins 61, 28, 12,58
Puoint LineSeries {Collection)
PolygonSeries (Collection)
SampleDataSeries (Collection)
Stock Series (Collection)
Titles Auto Placement
¥hues (Collection)
Y fues (Collection)
ZoomPanQptions

Figure 6-1. ViewXY object tree.

62 LightningChart® .NET User’s Manual, rev. 10.5

Graph background Graph margins, top Title Background Another X axis

Annotation
Y axis
Y axis
value labels Another Y axis
Y axis
title

Graph margins,
left

Graph margins,
right

L Legend box
Scrollbar Fao .
h
with 64-bit Eg?t% mmargms,
value range

X axis X axis title

Figure 6-2. A quick overview of ViewXY

Graph margins

Margins are adjusted automatically by default by axis count and their settings. By setting
ViewXY.AxisLayout.AutoAdjustMargins = False, Margins property applies, which allows the
margin sizes to be set manually. Set all margins to 0 to make the graph fill the whole view area.
See chapter 6.4 for further information.

Graph border

A border is drawn around the graph area, in the location of margins. Border property can be

used to change its color and visibility as well as to determine if it should be rendered behind

the series. More about border in chapter 6.4

Background

Set the background fill with Background (ChartBackground in WPF) property. There are plenty
of filling options available. See chapter 5.10.

Copyright LightningChart Ltd 2009-2023 63

Graph background

Set the graph background fill with GraphBackground property. Graph is the area where all
grids, series, series cursors, event markers etc. are rendered.

chart.ViewXY.GraphBackground.Color = Colors.DarkBlue;

Title
This is the main title for the chart. Set the text, shadow, color, text border, rotation, font,
alignment etc. with Title.Text, Title.Shadow... properties.
chart.Title.Text = "Title text";
Y-axes
The vertical axes representing Y values. See chapter 6.2.
X-axis
The horizontal axes representing X values. See chapter 6.3.
Annotations
Annotations allows displaying mouse-interactive text labels or graphics anywhere in the chart
area. See chapter 6.26.
Legend box
Lists all the series of the chart. See chapter 6.27.
Scrollbar

A scrollbar having unsigned 64-bit value range, to support massive count of sample indices
directly. In fact, HorizontalScrolIBars and VerticalScrollBars are collection properties in the
chart root level, but they are aware of ViewXY’s margins. See chapter 13.

LightningChart® .NET User’s Manual, rev. 10.5

6.1 Acxis layout options

The general

properties adjusting axis placement,

automatic margins

ViewXY.AxisLayout properties and sub-properties.

AutoAdjust AxisGap b

AutoAdjust Margins True
AutoShrink SegmentsGap True
AuisGEnid Strips MNaone
GridVisibiltyOrder BehindSeries
Segmerts (Collection)
SegmentsGap 20
¥PxisAtoPlacement AllBottom
HhuisTtleAutoPlacement True

H¥(Grid Strip Axis Index 0

Y AesLayout Layered

Y AxigAutoPlacement AllLeft
YhuigTtleAutoPlacement True

Y(Grd StripAxisIndexLayered 0

Figure 6-3. AxisLayout property tree.

6.1.1 Setting how axes are placed

6.1.1.1 X-axis automatic placement

Demo examples: Automatic axis placements; Several axes

XAxisAutoPlacement controls how the X axes are placed vertically.

chart.ViewXY.AxisLayout.XAxisAutoPlacement =

etc.

can be found

Figure 6-4. XAxisAutoPlacement = AllBottom. Three X axes added, all are positioned below the graph.

in

XAxisAutoPlacement.AllBottom;

Copyright LightningChart Ltd 2009-

2023

65

Figure 6-5. XAxisAutoPlacement = AllTop. All X axes are positioned above the graph.

3 —
0 2 4 6 8 10
X axis 1
P R Sty
1000 1500

Figure 6-6. XAxisAutoPlacement = BottomThenTop. Axes are distributed below and above the graph, every other axis to
the opposite side, starting from bottom.

Figure 6-7. XAxisAutoPlacement = TopThenBottolm. Axes are distributed below and above the graph, every other axis
to the opposite side, starting from top.

66

LightningChart® .NET User’s Manual, rev. 10.5

1500

Figure 6-8. XAxisAutoPlacement = Explicit. The axis appears on the side of the selected explicitly. XAxisl has
ExplicitAutoPlacementSide property set to Bottom, whereas XAxis2 and XAxis3 to Top.

Figure 6-9. XAxisAutoPlacement = Off. Automatic axis placement is disabled, and Position and Alignment properties of
each axis apply separately. First axis Position = 0, Second axis Position = 50 and Third axis position = 100.

6.1.1.2 Y-axis automatic placement

Demo examples: Y axis layouts; Automatic axis placements; Several axes

YAxisAutoPlacement controls how the Y-axes are placed horizontally.

chart.ViewXY.AxisLayout.YAxisAutoPlacement = YAxisAutoPlacement.AllLeft;

Copyright LightningChart Ltd 2009-2023 67

g
L

—
FUSHRT R OSSO N

&

0!

BB B s o o e
0 2 4 6 8 10
Xaxis 1

Figure 6-11. YAxisAutoPlacement = AllRight. All Y axes are positioned to the right side of the graph.

Figure 6-12. YAxisAutoPlacement = LeftThenRight. Axes are distributed to left and right side of the graph, every other
axis to the opposite side, starting fromthe left side.

68

LightningChart® .NET User’s Manual, rev. 10.5

Xaxis 1

Figure 6-13. YAxisAutoPlacement = RightThenLeft. Axes are distributed to left and right side of the graph, every other
axis to the opposite side, starting from the right side.

Figure 6-14. YAxisAutoPlacement = Explicit. The axis appears on the side of the selected explicitly. YAxis1 and YAxis2
have ExplicitAutoPlacementSide property set to Left, and YAxis3 to Right.

Figure 6-15. YAxisAutoPlacement = Off. Automatic axis placement is disabled, and Position and Alignment properties of
each axis apply separately. First axis Position = 0, Second axis Position = 20 and Third axis position = 80.

Copyright LightningChart Ltd 2009-2023 69

6.1.2 Graph segments and Y axes placement in them

If there are several Y axes defined, they can be vertically aligned in 3 different ways: Layered, Stacked
and Segmented. This can selected by ViewXY.AxisLayout.YAxesLayout property.

6.1.2.1 Layered

Demo examples: Y axis layouts; Automatic axis placements

In Layered view, all the Y axes start from the top of the graph and stretch to the bottom of the graph.
The axes and the series bound to them share the same vertical space.

chart.ViewXY.AxisLayout.YAxesLayout = YAxesLayout.Layered;

|
10
X axis fitle

Figure 6-16. An example view of 4 Y axes in YAxesLayout = Layered.

6.1.2.2 Stacked

Demo examples: Y axis layouts; Multi-channel cursor tracking; Data breaking in series

In Stacked view each Y axis gets its own vertical space. All Y axes have equal height.

chart.ViewXY.AxisLayout.YAxesLayout = YAxesLayout.Stacked;

70 LightningChart® .NET User’s Manual, rev. 10.5

{
10
X axis title

Figure 6-17. An example view of 4 Y axes in YAxesLayout = Stacked.

6.1.2.3 Segmented

Demo examples: Y axis layouts; Multiple legends; Segments with splitters

In Segmented view the vertical space is divided between Segments. Each segment can contain
several Y axes. The relational height of each segment can be set, and every Y axis within a segment
gets the segment's height.

chart.ViewXY.AxisLayout.YAxesLayout = YAxesLayout.Segmented;

Segments must be created in AxisLayout.Segments collection. The segment added first will be placed
on the bottom of the chart. A segment has only one property, Height. It is a relational size versus
other segments. It is not defined in screen pixels, as the segments need to rescale with the chart's
size.

// Adding two segments, the second one is twice as high as the first one
chart.ViewXY.AxisLayout.Segments.Add (new YAxisSegment ());
chart.ViewXY.AxisLayout.Segments.Add (new YAxisSegment ());
chart.ViewXY.AxisLayout.Segments[0].Height = 1;
chart.ViewXY.AxisLayout.Segments[0] .Height = 2;

The Y axes can be assigned with a segment by setting yAxis.Segmentindex property. The
Segmentindex is the index in the AxisLayout.Segments collection.

chart.ViewXY.YAxes[0].SegmentIndex = 0;
chart.ViewXY.YAxes[1l].SegmentIndex 1;

Copyright LightningChart Ltd 2009-2023 71

—r—1—1
10
X axis fitle

Figure 6-18. An example view of 4 Y axes in YAxesLayout = Segmented. First two segments have Height = 1, and last
segment has Height of 2.5. Axis1.Segmentindex = 0, Axis2.Segmentindex = 1, Axis3 and Axis4.Segmentindex = 3.

When a Stacked or Segmented view is selected, the vertical space between graph segments can be
adjusted by using ViewXY.AxisLayout.SegmentsGap property.

chart.ViewXY.AxislLayout.SegmentsGap = 10; // Sets 10 pixel gap between each segment

If there is a large amount of Y axes defined, AutoShrinkSegmentsGap property should be enabled to
automatically decrease the gaps. By doing so, every Y axis gets at least some vertical space to be drawn.

chart.ViewXY.AxislLayout.AutoShrinkSegmentsGap = false;

ViewXY.GetGraphSegmentinfo() -method can be used to find out where the graph segment borders
are, if there is a need to implement segment specific user interface logic.

// Getting top and bottom coordinates of every segment
float[] topCoords = chart.ViewXY.GetGraphSegmentInfo () .SegmentTops;
float[] bottomCoords = chart.ViewXY.GetGraphSegmentInfo () .SegmentBottoms;

6.1.3 Axis grid strips

Demo examples: Historic data review; Zoom bar chart

The axis grid (division) intervals can be shown over the graph background as fills. By setting
ViewXY.AxisLayout.AxisGridStrips to X, X-axis is used to set the strips. Respectively, by setting
AxisGridStrips to Y, Y-axis is used to set the strips. Both -option sets the strips for both X and Y axis, while
None shows no grid strips are used at all.

72

LightningChart® .NET User’s Manual, rev. 10.5

chart.ViewXY.AxisLayout.AxisGridStrips = XYAxisGridStrips.X;

XGridStripAxisindex sets the X-axis that is to be used for strips in case several axes are used. Only one X-
axis can be set at a time.

chart.ViewXY.AxisLayout.XGridStripAxisIndex = 0;

YGridStripAxisindexLayered sets the Y-axis to be used for strips, when Layered YAxisLayout -option is
used. When Stacked layout, all Y-axes have their own strips.

chart.ViewXY.AxisLayout.YGridStripAxisIndexLayered = 0;
The strip colors can also be adjusted in GridStripColor property of X- or Y-axis object.

chart.ViewXY.YAxes[0] .GridStripColor = Color.FromArgb (80, 0, 0, 100);

Figure 6-20. AxisGridStrips =X.

Copyright LightningChart Ltd 2009-2023 73

Y axis title

//V\M A/

e e e e
8 10 12 14

X axis title

Figure 6-22. AxisGridStrips = Both. GridStripColor has also been changed for the Y-axis.

6.1.4 Limit Y-value to stack segment

Every XY series has LimitYToStackSegment property. When enabled, the series will be clipped outside
the segment and the Y-axis area it belongs to. In most cases the property is a boolean to control
whether the data should be clipped or not. However, some newer series (SampleDataBlockSeries,
LiteLineSeries and LiteFreeformLineSeries) have additional options. There LimitYToStackSegment is of
enumerated type with option: None (no clipping), Clip (line will be clipped as for old series) and
ClampToSegment (if line exceeds segment’s edge, it will be rendered horizontally on the edge). Note
that for LiteFreeformLineSeries, a line with ClampToSegment enabled will be rendered along the edge
as far as the real point X-value would be. Therefore, it may be longer than other series clamping line.

74 LightningChart® .NET User’s Manual, rev. 10.5

I

b T
179 000 180 000 181000
Point number

Figure 6-23. LimitYToStackSegment was set for SampleDataBlockSeries. ClampToSegment option is used for top series,
while Clip for bottom.

6.1.5 Other AxisLayout options

AutoAdjustAxisGap sets the space between two adjacent axis areas in pixels, when XAxisAutoPlacement
or YAxisAutoPlacement is enabled.

chart.ViewXY.AxisLayout.XAxisAutoPlacement = XAxisAutoPlacement.AllBottom;
chart.ViewXY.AxisLayout.AutoAdjustAxisGap = 10;

By enabling XAxisTitleAutoPlacement (or YAxisTitleAutoPlacement), the axis title distance is
automatically calculated based on value labels’ length, alignment options of axes and tick lines. If
XAxisTitleAutoPlacement (or YAxisTitleAutoPlacement) is disabled, Title.DistanceToAxis of axis object
property sets the distance to axis line instead.

chart.ViewXY.AxisLayout.XAxisTitleAutoPlacement = false;
chart.ViewXY.XAxis[0].Title.DistanceToAxis = -20;

6.2 Y axes

An unlimited count of Y axes can be defined. Add the Y axes by using YAxes collection property.

// Adding Y-axes to the chart
chart.ViewXY.YAxes.Add (new AxisY()):;

AxisY axisY = new AxisY(chart.ViewXY);
axisY.Title.Text = "Y-axis";
chart.ViewXY.YAxes.Add (axisY) ;

Copyright LightningChart Ltd 2009-2023 75

6.2.1 AxisY class properties

ScaleNib, drag to adjust
axis scale.

LightningChartUltimate
Units
- Major grid
Axis line, drag to
scroll the graph
vertically.
Minor grid
Axis title

Major division
Major division tick

Minor division tick

Minor division
Value label

b

ScaleNib, drag to
adjust axis scale.

9 10
X axis title

Figure 6-24. Y axis, divisions and grid.

6.2.2 Tick value labels formatting

Demo examples: High-Low; Temperature graph; Multi-channel cursor tracking; Map route

AutoFormatLabels allows the count of decimals, time format representation, or the use of exponential
representation, to be calculated automatically to be suitable for visible range. To set the value
formatting manually, AutoFormatLabels should be disabled.

chart.ViewXY.YAxes[0] .AutoFormatLabels = false;
LabelsNumberFormat can be used to set the format of numeric values.

// Always use two decimals
chart.ViewXY.YAxes[@].LabelsNumberFormat = "0.00";

// Exponential presentation with one decimal
chart.ViewXY.YAxes[@].LabelsNumberFormat = "0.0E+00";

To set the time formatting manually, use LabelsTimeFormat property. It supports any count of second
fractions (e.g. “.ffffffff”) allowing precise zoomed views.

// Show hours, minutes, seconds and four significant digits
_chart.ViewXY.YAxes[@].LabelsTimeFormat = "HH:mm.ss.ffff";

76 LightningChart® .NET User’s Manual, rev. 10.5

6.2.3 Value type

ValueType -property controls which value types are used by the axis labels.

// Changing axis value type
chart.ViewXY.YAxes[0] .ValueType = AxisValueType.DateTime;

ValueType has the following options available:

Number
Regular numeric format for integer and decimal presentation. When AutoFormatLabels is
disabled, LabelsNumberFormat applies. Default value.
Time
For time of day presentation. When AutoFormatLabels is disabled, LabelsTimeFormat applies.
DateTime
Date presentation, with optional time of day. When AutoFormatlLabels is disabled,
LabelsTimeFormat applies here as well, similarly to Time type.
Note! For best accuracy, it is adviced to set DateOriginYear, DateOriginMonth and
DateOriginDay just below the dates shown in the chart. Use DateTimeToAxisValue method
to obtain axis values from a .NET DateTime object to be used in series data.
// Convert current time to Y value
data[0].Y = chart.ViewXY.YAxes[0] .DateTimeToAxisValue (DateTime.Now) ;
MapCoordsDegrees
Geographical map coordinate presentation in degrees decimals.
Example: 40.446195° -79.948862°
MapCoordsDegNESW

Geographical map coordinate presentation in degrees decimals, with N, E, S, W indication.
Example: 40.446195N 79.948862w

MapCoordsDegMinSecNESW
Geographical map coordinate presentation in degrees, arc minutes, arc seconds, with N, E, S,

W indication.
Example: 40°2'13"N 9°58'2"w

Copyright LightningChart Ltd 2009-2023 77

MapCoordsDegPadMinSecNESW

Geographical map coordinate presentation in degrees, arc minutes, arc seconds, with N, E, S,
W indication. The arc minute and second values are padded with zeros, if they are < 10. It is a
great way to present coordinates in Y axis, as the numbers are aligned.

Example: 40°02'13"N 9°58'02"wW

6.2.4 Range setting

Set the value range of an axis by giving values to Minimum and Maximum properties. Minimum shouldt
be less than Maximum. When trying to set Minimum > Maximum, or vice versa, internal limiter will limit
the values near the other value. To set both values simultaneously, use SetRange(...) method. Passing
Minimum > Maximum in SetRange automatically flips these values so that Minimum < Maximum.

chart.ViewXY.YAxes[0] .Minimum = 5;
chart.ViewXY.YAxes[0].SetRange (5, 10);

The value range of Y axis can be scrolled directly by dragging the axis with mouse when AllowScrolling is
enabled. Minimum or Maximum can be modified by dragging the scale nib area (end of an axis) up or
down when AllowScaling property is enabled.

// Enabling / disabling dragging with mouse
chart.ViewXY.YAxes[0].AllowScrolling = true;
chart.ViewXY.YAxes[0] .AllowScaling = true;

6.2.5 Restoring range

Axis has properties RangeRevertEnabled, RangeRevertMaximum and RangeRevertMinimum. They can
be used to revert axis ranges to specific values when mouse zooming is applied from right to left. See
6.28.5 for details.

6.2.6 Divisions

Divisions, controlled by MajorDiv and MinorDiv -properties, determine the amount of major and minor
ticks in the chart. For example, setting five major divisions divides the Y-axis in five equally sized spaces
separated by a tick and a major grid line. By default, major ticks are enabled, and minor ticks disabled.

// Enabling minor division ticks
chart.ViewXY.YAxes[0] .MinorDivTickStyle.Visible = true;

78

LightningChart® .NET User’s Manual, rev. 10.5

AutoDivSpacing -property allows the major divisions to be calculated automatically. It is enabled by
default. The spacing is calculated based on value labels’ font size and AutoDivSeparationPercent
properties to be as user-friendly as possible. AutoDivSeparationPercent leaves a space between the
value labels. It is based on the label’s height, meaning that increasing the value reduces the amount of
major divisions. AutoDivSpacing and AutoDivSeparationPercent do not affect minor divisions. Instead,
they are calculated between major divisions based on the MinorDivCount property value.

// 100 percent of value labels’ height left between each label
chart.ViewXY.YAxes[0] .AutoDivSeparationPercent = 100;

If AutoDivSpacing is disabled, the division spacing can be controlled manually with MajorDiv and
MajorDivCount -properties. MajorDiv controls the spacing by magnitude, whereas MajorDivCount
controls it by division count. KeepDivCountOnRangeChange property can be used to force maintaining
the divisions count the same whenever the axis range is changed, regardless of MajorDiv setting.

// Major ticks after each 20 units (0, 20, 40, 60..)
chart.ViewXY.YAxes[0] .MajorDiv = 20;

// Show exactly five major divisions

chart.ViewXY.YAxes[0] .MajorDivCount = 5;

// Keep the division count the same even if the axis range is changed
chart.ViewXY.YAxes[0] .KeepDivCountOnRangeChange = true;

Maijor division tick style can be set from MajorDivTickStyle property. Edit the ticks and labels orientation
by using MajorDivTickStyle.Alignment property. The value labels are drawn next to major division ticks.
Respectively, the minor division properties can be modified with MinorDivTickStyle property.

// Changing alignment and tick length of the major division ticks
chart.ViewXY.YAxes[0] .MajorDivTickStyle.Alignment = Alignment.Far;
chart.ViewXY.YAxes[0] .MajorDivTickStyle.LineLength = 20;

6.2.7 Grid

Horizontal grid lines are drawn on vertical positions of division ticks. Major grid for major division ticks,
minor grid for minor division ticks. MajorGrid and MinorGrid properties can be used to edit the
appearance of the grids.

// Modifying the grid styles
chart.ViewXY.YAxes[0] .MajorGrid.Color = Color.FromArgb (100, 200, 200, 200);
chart.ViewXY.YAxes[0] .MinorGrid.Pattern = LinePattern.Dash;

Copyright LightningChart Ltd 2009-2023 79

6.2.8 Custom ticks

Demo examples: Custom axis ticks; Date axes and custom ticks

Axis tick positions and label texts can be manually set by using custom ticks. Set CustomTicksEnabled
true and define the positions of the ticks with the CustomTicks list property.

CustombxisTick Collection Edito

Members: Custom/fods Tick properties:

0] CustombeisTick
1| Custom&xisTick

3| CustomixisTick AuisValue 1
Color B Red
Label Text Buy levelUSD 11
Length 10

TickAndGrid

Visible True

Figure 6-25. Custom tick properties

Custom ticks can consist of a tick, a grid or both. Use Style to select between Tick, Grid or TickAndGrid
respectively. The color of a tick or a grid can be modified via Color property. Set tick length in Length
property. The grid line pattern follows the setting of MajorGrid.Pattern and PatternScale properties of
axis.

CustomAxisTick has AxisValue and LabelText properties to define their positions and corresponding label
texts. When using custom ticks, disable AutoFormatLabels to show the custom label texts. Furthermore,
InvalidateCustomTicks() should be called after setting new custom ticks in code.

// Adding a custom tick with a green tick and grid line
_chart.ViewXY.YAxes[0].CustomTicks.Add (new CustomAxisTick(chart.ViewXY.YAxes[O],
14, "Sell level\nUSD 14", 10, true, Colors.Green, CustomTickStyle.TickAndGrid))

’

// White tick with no grid line
_chart.vViewXY.YAxes[0].CustomTicks.Add (new CustomAxisTick(chart.ViewXY.YAxes[O],
12.2, "Month\nmedian", 20, true, Colors.White, CustomTickStyle.Tick)):;

// Red tick and grid line
_chart.ViewXY.YAxes[0].CustomTicks.Add (new CustomAxisTick(chart.ViewXY.YAxes[O0],
11, "Buy level\nUSD 11", 10, true, Colors.Red, CustomTickStyle.TickAndGrid));

// Allow showing the custom tick strings
_chart.vViewXY.YAxes[0] .CustomTicksEnabled = true;
_chart.ViewXY.YAxes[0O].AutoFormatLabels = false;
_chart.ViewXY.YAxes[0] .MajorGrid.Pattern = LinePattern.Dot;
_chart.vViewXY.YAxes[0O].InvalidateCustomTicks () ;

80 LightningChart® .NET User’s Manual, rev. 10.5

Sell level
USD 14

Month
median

Buy level
USD 11

Figure 6-26. Custom ticks on Y axis. On the left, axis.AutoFormatLabels = false. On the right, AutoFormatLabels = True.

Minor ticks or grids are not shown when CustomAxisTicksEnabled is true. To set arbitrary minor ticks or
grids, just add CustomAxisTicks in the CustomTicks collection with different colors or line lengths.

6.2.9 Event based axis value formatting
Demo examples: Axis range edit, value labels; Business dashboard; Intensity persistent layer, signal

Besides CustomAxisTicks, axis value labels can also be formatted via FormatValuelLabel -event. It
modifies each value label of the corresponding axis based on the returned string value. The event has
e.Axis and e.Value properties, which can be used access the axis object and the label value being
modified. Unlike CustomAxisTicks, FormatValueLabel cannot be used to change the position of the
labels, as they still follow the division settings (chapter 6.2.6) for the axis.

// Subscribing to FormatValueLabel -event for the Y-axis
_chart.ViewXY.YAxes[0O] .FormatValueLabel += Chart FormatValuelLabel;

// Modifying the value labels inside the event
private string Chart FormatValueLabel (object sender, FormatValueLabelEventArgs e)
{

return "Y-axis value: " + e.Value.ToString();

}

Copyright LightningChart Ltd 2009-2023 81

Y-axis value: 10
Y-axis value: 9
Y-axis value: 8
Y-axis value: 7
Y-axis value: 6
Y-axis value: 5
Y-axis value: 4
Y-axis value: 3
Y-axis value: 2

Y-axis value: 1

Y-axis value: 0 — ey

00

Figure 6-27. FormatAxisValues used with the lower y-axis. The values are shown as "”Y-axis value: ” + current value

FormatValuelabel can be used with both Y- and X-axis as well as with every axis in View3D.

6.2.10 Reversed X and Y axis

X and Y axis can be shown reversed, so that minimum value is above/later than the maximum value.
Handy feature when, for example, visually negating polarity of the series data assigned to the Y axis.

chart.ViewXY.YAxes[0] .Reversed = true;

6.2.11 Logarithmic axes
Demo examples: Logarithmic axes; Minimal logarithmic values; Log axis fit, ignore zeros

Set ScaleType to Logarithmic to use a logarithmic presentation. Set the logarithm base value with
LogBase property. The chart can also show logarithmic values between 0...1. Use LogZeroClamp to set
the minimum value in the axis. To use typical minimum value of a log axis, set 1. To use values below
zero, set a proper small positive value, like 1.0E-20, suitable for the used data. To use special formatting
for tick labels, set LogLabelsType.

82 LightningChart® .NET User’s Manual, rev. 10.5

// Setting a logarithmic axis

chart.ViewXY.YAxes[0].ScaleType = ScaleType.Logarithmic;
chart.ViewXY.YAxes[0] .LogBase = 10;

[
chart.ViewXY.YAxes[0] .LogZeroClamp = 1;
[

0
chart.ViewXY.YAxes[0] .LogLabelsType = LogLabelsType.LoglOExponential;

6.2.11.1 Exponential presentation for 10 base

Chemical Concentration Data

o
=
=
=
o
®
]
=z
o
v

20

10
Volume (ml)

Figure 6-28. Logarithmic Y axis with values near zero. LogZeroClamp is set to 1.0E-20. LogBase is set to 10, LogLabelsType is
set to Log10Exponential, to show the values in 1.0E presentation.

Copyright LightningChart Ltd 2009-2023 83

6.2.11.2 Natural logarithm

Logarithmic Axes Example

Figure 6-29. Natural logarithm view. LogBase is set to Math.E LogLabelsType is set to LogE_MultiplesOfNeper.

6.2.12 Converting between axis values and screen coordinates

Axes have methods to convert axis values (data point values) to screen coordinates and screen
coordinates to axis values. Use ValueToCoord method to convert an axis value to a screen coordinate,
and CoordToValue to convert a screen coordinate to an axis value. Set UseDIP = False, if pixels are
preferred, not Device independent pixels (DIPs).

float screenCoordinate = chart.ViewXY.XAxes[0].ValueToCoord (axisValue);

ValueToCoord and CoordToValue methods are available after the chart has got its final size. For example,
subscribe to chart.AfterRendering event to ensure the chart has been fully rendered.

To convert multiple values or coordinates at once, use ValuesToCoords and CoordsToValues methods.
They take/return axis values as double arrays (integer array for X axis CoordToValue) and screen
coordinates as float arrays.

chart.ViewXY.YAxes[0] .CoordsToValues (coordArray, out doubleValueArray, false);

84

LightningChart® .NET User’s Manual, rev. 10.5

6.2.13 MiniScale

MiniScale is a miniature X and Y axis substitute. In some applications this kind of scale presentation is
preferred for quick visual overview of data magnitude, or alternatively, when there’s no space for actual
axes. MiniScale can be enabled via Visible -property. MiniScale is a sub-property of Y axis class. However,
the X dimension is always bound to the first X axis (XAxes[0]). Set the visible units by modifying Units.Text
property of X and Y axis. MiniScale cannot be used together with logarithmic axes.

// Configuring a MiniScale

chart.ViewXY.YAxes[0] .MiniScale.Visible = true;
chart.ViewXY.YAxes [0
chart.ViewXY.YAxes

[0] .MiniScale.VerticalAlign = AlignmentVertical.Bottom;

[
chart.ViewXY.YAxes|[

[

[

]

] .MiniScale.Offset.SetValues (-10, -30);

] .MiniScale.PreferredSize = new SizeDoubleXY (30, 30);
chart.ViewXY.XAxes [0]
chart.ViewXY.YAxes [0]

.Units.Text = "s";

0
0
0
0] .Units.Text = "uv";

00:09.1 00:09.2 00:09.3

MiniScale

Figure 6-30. MiniScale in the bottom-right corner of the graph.

6.2.14 Axis end point labels

Regular axis major ticks and labels are placed at uniform intervals. Therefore, axis minimum or maximum
could be without a label, especially when the axis is panned, scrolled or logarithmic axis is zoomed deeply.
The labels can be enforced to be shown at both ends of axis by enabling EndPointLabelsVisible property.

PreferEndPointLabelsOverNearbyMajorTick property controls if the end label or a regular major tick
label is preferred if their positions overlap. EndPointMajorTickThreshold property defines the number
of major ticks that must be visible before the end point labels are hidden. The default -1 means the end
point labels will always be visible. If logarithmic axis major tick count <= EndPointMajorTickThreshold,
then label next to minor tick will be shown.

Copyright LightningChart Ltd 2009-2023 85

LightningChart® .NET LightningChart® .NET

114 = T I; T T T T T T { T T T T T
-802 0 802 1604 2406 3208 4010 4812 802 1604 2406 3208 4010

Figure 6-31. On the left chart’s X axis PreferEndPointLabelsOverNearbyMajorTick is disabled, while on the right this property is
enabled. The left chart’s Y axis is set to always show end labels (EndPointLabelsVisible=true, EndPointMajorTickThreshold=-1),
while the right chart’s Y axis is configured to show a minor tick in addition to one major tick (EndPointLabelsVisible=true,
EndPointMajorTickThreshold=1).

6.3 X axis

X axis divisions and grid settings are equal to Y axes settings. Therefore, all the properties and features
explained in the previous chapter can be applied to X axis as well. However, X axes has several real-time
scrolling related properties Y axes don’t have.

6.3.1 Real-time monitoring scrolling

Demo examples: Billion Points; Temperature graph; Thread-fed multi-channel data

When making a real-time monitoring solution, the X axis must be scrolled to correctly show the current
monitoring position, which usually is the time stamp of latest signal point. Set the latest time stamp to
ScrollPosition property after the new signal points have been set to a series.

// Set real-time monitoring scroll position to the latest X value
chart.ViewXY.XAxes[0].ScrollPosition = latestDataPoint.X;

LightningChart has several scrolling modes, selected using ScrollMode property.

chart.ViewXY.XAxis[0].ScrollMode = XAxisScrollMode.Scrolling;

86 LightningChart® .NET User’s Manual, rev. 10.5

6.3.1.1 None

The default option. No scrolling is applied when setting ScrollPosition to None. This is often the selection
to use when not using real-time monitoring.

6.3.1.2 Stepping

When collected data reaches the end of the X axis, the axis with all series data is shifted left by a stepping
interval. This shift is executed everytime the X axis end is reached. Steppinginterval property is defined
as value range.

chart.ViewXY.XAxes[0].SteppingInterval = 3;

LightningChartUltimate

Figure 6-32. X axis scroll mode: stepping

6.3.1.3 Scrolling

X axis is kept stationary until scrolling gap has been reached, after which the X axis with all series is
continuously shifted left. If the scrolling should take effect when the scroll position reaches the end of X
axis, set ScrollingGap to 0. ScrollingGap property is defined as percents of graph width.

chart.ViewXY.XAxes[0].ScrollingGap = 15;

Copyright LightningChart Ltd 2009-2023 87

LightningChartUltimate

o
o
=

°

ling gap

Figure 6-33. X axis scroll mode: scrolling

Waveform stability during scrolling

LightningChart supports incremental rendering data construction of real-time signal, when
using series.AddPoints(), AddValues() or AddSamples() -methods. This means that rendering
data is calculated only from the new part of data and combined with the existing rendering
data.

PointLineSeries, SampleDataSeries, AreaSeries and HighLowSeries have a specific property
for ScrollMode = Scrolling, which effects the visual stability of scrolled series maintaining the
waveform quality. The property is called ScrollingStabilizing.

chart.ViewXY.PointLineSeries[0].ScrollingStabilizing = true;

When ScrollingStabilizing is enabled, floating point coordinates are rounded to nearest
integer coordinate, which results into a visually stable, non-fluctuating waveform. In most
cases, this is the best approach. It may, however, distort the phase info slightly when rounding
the coordinates.

When ScrollingStabilizing is disabled, data rendering uses floating point coordinates which
appear as slightly fluctuating waveform when GPU decides the pixel coordinate. This gives
better visual quality especially when displaying sine data where there’s a transition going up
and down nearly every other pixel.

To use incremental rendering data construction, add new points as follows

chart.BeginUpdate() ;
series.AddPoints (array, false);
xAxis.ScrollPosition = latestXValue;
chart.EndUpdate () ;

LightningChart® .NET User’s Manual, rev. 10.5

Full refresh of rendering data can be made any time with InvalidateData() call of series.

chart.BeginUpdate() ;
series.AddPoints (array, false);
series.InvalidateData() ;
xAxis.ScrollPosition = latestXValue;
chart.EndUpdate () ;

Performance Stability Phase
series.AddPoints(), Perfect Impaired Good
ScroliStabilizing
disabled
series.AddPoints(), Perfect Best Slightly impaired
ScrollStabilizing
enabled
series.AddPoints(), Impaired Impaired Perfect
InvalidateData()

Table 5-1. Waveform stability during scrolling

6.3.1.4 Sweeping

Sweeping mode gives probably the most user-friendly real-time monitoring view. Sweeping uses two X
axes. The first axis is collected full after which a sweeping gap appears. The second X axis is then swept
over the first one. Both X axes show their own value labels. SweepingGap property is defined as percents
of graph width.

chart.ViewXY.XAxes[0].SweepingGap = 5;

LightningChartUltimate

E
12
1400 /\/W

_;‘"‘.— Sw ‘eeping:ga ij’

-1600 F —
200 205 210 E_ 2 3_ 14,0 14‘5

Figure 6-34. X axis scroll mode: sweeping

Copyright LightningChart Ltd 2009-2023 89

6.3.1.5 Triggering

The X axis position is determined by a series value exceeding or falling below a trigger level. Use

Triggering property to set the triggering options. Triggering can be set active by enabling
Triggering.TriggeringActive property.

One series has to be set as a triggering series. Accepted triggering series types are PointLineSeries and
SampleDataSeries. Set the triggering Y level with Triggering.TriggerLevel. Use
Triggering.TriggeringXPosition to order where the level triggered point will be drawn horizontally, as
percents of graph width.

Triggering point, falling edge

Trigger level

. Triggering X positionn Static X grid

Figure 6-35. X axis scroll mode: Triggered with static X grid.

When using a triggered X-axis scroll position, it usually is not suitable to show the regular X axis with
values and grid because of jumping from place to another based on the incoming series data.

e Approach 1: Use static X grid. Hide the regular X axis objects by setting XAxis.Visible = false
(or LabelsVisible = false, MajorGrid. Visible = false and MinorGrid. Visible = false). Then, show
the static X grid by setting Triggering.StaticMajorXGridOptions and
Triggering.StaticMinorXGridOptions.

e Approach 2: Create another X axis, with preferred scale, and set it to ViewXY collection.
Don’t assign the second XAxis for the series.

For scale indication, use Y axis MiniScale or define an Annotation object (see chapter 6.26) to show range
like “200 ms/div”.

90 LightningChart® .NET User’s Manual, rev. 10.5

6.3.2 Scale breaks

Demo examples: Scale breaks; Stock course with previous close

Starting from version 8, X axes support ScaleBreaks. ScaleBreaks allow excluding specific X ranges, e.g.
inactive trading hours/dates or machinery off-production hours. All the series, that have been assigned
to the specified X axis, are clipped, including axis and labels themselves.

There are limitations of when ScaleBreaks can be used: ScrollMode must be set to ‘None’ and ScaleType
to ‘Linear .

Insert the ScaleBreak objects in ScaleBreaks collection of X axis.

w Misc
Begin 223669800
DiagonallineSpacing 10
Enabled True
End 223727400
Fill
Gap 10
LineStyle
Style Diagonal LinelUp

Figure 6-36. ScaleBreak properties.

Specifiy the range of the break with Begin and End. They are given as axis values, not DateTimes. Use
axis.DateTimeToAxisValue method to convert them if using DateTimes.

Gap width can be adjusted with Gap, also 0 is accepted if no gap should be visible. Gap appearance can
be configured with Style.

o With Style = ‘Fill’, adjust the fill with Fill property.
o With Style = ‘DiagonalLineUp’ or ‘DiagonalLineDown’, adjust the appearance with
DiagonalLineSpacing and LineStyle properties.

By setting Enabled = False, the break is not effective.

PointLineSeries, AreaSeries and HighLowSeries have ContinuousOverScaleBreak property. By enabling
it, a connecting line will be rendered over the gap.

Copyright LightningChart Ltd 2009-2023 91

LightningChartUltimate

Stockrise Busters, Inc./ USD

=]

Figure 6-37. Original trading data, Monday to Friday, 10 AM — 6 PM. ScaleBreaks haven’t been applied. Majority of the time range
doesn’t have data as stock exchange has been closed making it harder to see the essential info. PointLineSeries jumping from
Close-to-Close values.

LightningChartUltimate

ﬁodm’se Busters, Inc./ USD

Figure 6-38. ScaleBreaks applied to exclude non-active trading hours. More screen space is available for essential data. Style = Fill,
Gap = 10. PointLineSeries jumping from Close-to-Close values, PointLineSeries.ContinuousOverScaleBreak = True.

LightningChartUltimate
ockrise Busters, Inc./ USD

! AN W L
ILIV\‘I\NHM Nar«ﬁr‘u\f”\/

Figure 6-39. ScaleBreaks applied, during non-active trading hours. Style = DiagonallinesUp, Gap = 20.
PointLineSeries.ContinuousOverScaleBreak = True.

92 LightningChart® .NET User’s Manual, rev. 10.5

LightningChartUltimate

Stockrise Busters, Inc./ USD

W| — Stockrise Busters, Inc, close

=
16.02.2017 17.02.2017 20:02.2017
14.30 14.30 1430

Figure 6-40. PointLineSeries.ContinuousOverScaleBreak = False. The lines are not connected from previous point to next
point over the gap. Instead, they continue to their original direction as if no scale break has been defined.

6.4 Margins

Margins are empty spaces around the graph area. All the contents of the view are fitted inside the

margins except for annotations, legend boxes and the chart title.

Margin.Top

LightningChartUltimate

; l
2 e
Margin.Right
A

M Heat map

m

60

)
-
©

Margin. Bottom

Figure 6-41. Margins surrounding the graph area. Content is fitted inside the margin area. Chart title and legend box can be

positioned on margins.

Copyright LightningChart Ltd 2009-2023 93

When AutoAdjustMargins is enabled, the graph size is adjusted so that there is enough space for all the
axes and chart title. When it is disabled, ViewXY.Margins property applies allowing setting margins
manually.

By default, a customizable border rectangle, Border, is drawn around the graph area in the location of
margins. It can be turned off by setting Border.Visible = False. The color of the Border can also be
changed via Color property. Furthermore, Border can also be rendered behind the series by setting
RenderBehindSeries to True.

During the run time, the margin rectangle in pixels can be retrieved by calling ViewXY.GetMarginsRect
method, which applies to both automatic and manual margins. It is useful when needing to do screen-
coordinate based computation or object placement.

ViewXY.MarginsChanged event can be set to trigger when a margin rectangle has been changed because
of for example resizing it.

94

LightningChart® .NET User’s Manual, rev. 10.5

6.5 ViewXY series, general

ViewXY’s series allow data visualization in different ways and formats. All series are bound to axis value

ranges. Also, the series must be bound to one Y axis. Series have AssignXAxisindex and AssignYAxisindex

property for assigning the X and Y axis. In code, assign the X and Y axis with series constructor parameter,

alternatively.

6.5.1 Automatic series title placement

Demo examples: Minimal logarithmic value

Each XY series has title (by default hidden), for which style and position could be modified through

properties (series.Title.propertyName). Enabling ViewXY.TitlesAutoPlacement.Enabled informs chart

that series’ Title location should be calculated automatically in order to avoid multiple titles overlapping

each other. Title position could be locked at current X-Y value by enabling series.Title.LockAutoPosition

property. Auto positioning is reset with ViewXY.TitlesAutoPlacement.Reset() method.

6.6 PointLineSeries

Demo examples: Point line; Temperature graph; Line, palette coloring

PointLineSeries - for variable inferval progressing data
FAST TO RENDER

PP oirts[E]

Poirits(4] Pairts[12]
Paints[11]

Fuaints{1]
Faints[4]
Foints{13]

Faoints[&]
Foaints{0]

Foirts[2] Foints[7] Foirts[10]

Faoints[d]

X values must be in progressive order: Points [i+1].X & Point=[i].X

Figure 6-42. Overview of PointLineSeries

Copyright LightningChart Ltd 2009-2023

95

00.00.10
Time (s)

Figure 6-43. Three different PointLineSeries.

A PointlLineSeries can present a simple line, points (scatter) or both as a point line. Add the series to chart
by adding PointLineSeries objects to PointLineSeries list.

chart.ViewXY.PointLineSeries.Add (series); // Add series to the chart

6.6.1 Line style

All line series can render a line (between 2 or more points). The series have properties controlling color
and width of the line under LineStyle class. If the line should not be visible, set LineVisible = false. In
addition to those properties, line pattern also could be modified. Available options include Solid, Dot,
Dash, DashDot and SmallDot. Pattern line could be drawn for SampleDataSeries, PointLineSeries,
FreeformPointLineSeries, AreaSeries, HighLowSeries and LineCollection. For these series PatternScale
property can be used to modify the length of each dash or dot.

With SampleDataBlockSeries, LitelLineSeries, LiteFreeformLineSeries and DigitallineSeries only solid
line could be drawn.

6.6.2 Points style

To show the points, set PointsVisible = true. Alter the point style by setting PointStyle properties. Select
the shape from many pre-defined styles from PointStyle.Shape. One of the shape styles is Bitmap, which
allows drawing any bitmap image in the point location. Define the bitmap image with Bitmaplmage
property. BitmapAlphalLevel property can be used to alter the transparency of the bitmap. Adjust the
bitmap color tone by changing BitmaplmageTintColor to some other color than white. When using pre-

96

LightningChart® .NET User’s Manual, rev. 10.5

defined point styles, like Circle, Triangle, Cross etc. the drawing colors and filling styles can be defined.
Note that all colors or fills are not applicable for all shape styles. Point width and height can be set and
the points can be rotated as well.

6.6.3 Coloring points individually

Demo examples: Point line, individually colored points, Scatter points, individually colored

Starting from v.7.2, the PointlLineSeries, FreeformPointLineSeries, AreaSeries and HighLowSeries have
PointColor field in the data point structures.

To enable individual point coloring, set IndividualPointColoring to Color1, Color2, Color3 or BorderColor
setting. To disable individual point coloring, set IndividualPointColoring = Off. The color settings
correspond to that color in PointStyle property.

Individually colored points in PointLineSeries

650

=SOSR "\/\/\/“\\“H-Of‘/\ /4)/

550
RGN RN AT
e ey, \v’/ /\/\/\//\ \/\/\/ \// RNPNVAVA SV

2\ A\ I 1\ ”
W Vo v 1 N oA I~
Q) oy (7 T Y oY 6 - VA AN N
4 V/) A W o v/ v VoY

X axis title

Figure 6-44. In top, IndividualPointColoring = Colorl (solid colored point). In the middle, IndividualPointColoring =
BorderColor. In the bottom, IndividualPointColoring = Color2 (having gradient coloring with Color1 = transparent).

6.6.4 Adding points

The series points must be added in code. Use AddPoints(SeriesPoint[], bool invalidate) method to add
points to the end of existing points.

chart.ViewXY.PointLineSeries[0] .AddPoints (pointsArray); //Add points to the
end

To set whole series data at once, and overwrite old points, assign the new point array directly:

chart.ViewXY.PointLineSeries[0].Points = pointsArray; //Assign the points
array

Copyright LightningChart Ltd 2009-2023 97

Note! The PointLineSeries points X values must be in ascending order. If they have to be otherwise
ordered, use FreeformPointLineSeries instead.

For example, definition Points[0].X = 0, Points[1].X = 5, Points[2].X = 5, Points[3].X = 6 is valid.

But Points[0].X = 2, Points[1].X =1, Points[2].X = 6, Points[3].X =7 is not a valid value array for
PointlLineSeries.

6.6.5 Adding points, alternative way

Points can also be added in X and Y values arrays, which turns to be more convenient way in many
applications.

chart.ViewXY.PointLineSeries[0].AddPoints (xValuesArray, yValuesArray, false);

To set whole series data at once, and overwrite old points, assign the X and Y values arrays directly
(applicable in WinForms and WPF Non-bindable APlIs).

chart.ViewXY.PointLineSeries[0].SetValues (xValuesArray, yValuesArray);

6.7 LiteLineSeries

LiteLineSeries is a version of PointlLineSeries, that is optimized for much faster performance. It works
similarly to PointLineSeries but has less configuration options. LiteLineSeries draws only the line
between the data points but not the points themselves. Furthermore, it has only Color and Width
properties to adjust the series appearance. LiteLineSeries expects data points to be in progressive order.

Use AddPoints() method to add data point arrays to the series. These arrays should be of type double/,]
where the first value is the data point index while the second value has both X-and Y-values
ActualPointCount() can be called to find out the total number of points.

// Adding a LitelLineSeries with some random data points.
LiteLineSeries 1lls = new LitelLineSeries(chart.ViewXY,
_chart.ViewXY.XAxes[0], chart.ViewXY.YAxes[O0]);
1lls.Width = 2;

lls.Color = Colors.Lime;

double[,] values = new double[21, 2];
for (int i = 0; i < 21; i++)
{

values([i, 0] = i;

values[i, 1] = rand.NextDouble() * 100;
}
lls.AddPoints (values, false);
_chart.ViewXY.LiteLineSeries.Add(1lls);

98

LightningChart® .NET User’s Manual, rev. 10.5

6.8 SampleDataSeries
Demo examples: Billion points; Thread-fed multi-channel data; Signal reader

SampleDataSeries - for fixed interval progressing data
VERY FAST TO RENDER

Just Y values are stored in SamplesSingle or SamplesDouble array
=> Very compact memory footprint

Samples|[6]
Samples[4] Samples[12]
Samples[1] Samples[11]

Samples|[5]

| Samples[13]
Samples[0] Samples[9]
Samples[2]
Samples[10]
Samples[8]
% } } } } } } 'F '[} ; } $ I X
FirstSampleTimeStamp Sample interval = 1 / SamplingFrequency

Figure 6-45. Overview of SampleDataSeries

Add the series to chart by adding SampleDataSeries objects to SampleDataSeries list.

chart.ViewXY.SampleDataSeries.Add (sampleDataSeries); //Add a SampleDataSeries
to the chart

00:00.9600 00:00.9605 00:00.9610

Figure 6-46. Some sample data series.

Copyright LightningChart Ltd 2009-2023 99

SampleDataSeries is the line series used for presenting sampled signal data (discrete signal data). This
is generally used in real-time DSP applications. Visually, it is similar to PointLineSeries, so all line and
point formatting options apply. As SampleDataSeries has a fixed sample interval, there’s no need to
reserve memory to store point X values.

Note! SampleDataSeries does not resample or down-sample the given data. All given data values are
retained in the SamplesSingle or SamplesDouble arrays. LightningChart does not reduce the quality of
the data or lose peaks or accuracy of the data.

6.8.1 Y precision

The SampleDataSeries supports single and double precision sample Y values. Using single precision
values is recommended when keeping the memory reserving as low as possible. Select the sample
format with SampleFormat property.

Use the series SamplingFrequency (1 / sample interval) to set the fixed sample interval. To set the X
value (time stamp) where the samples begin, set FirstSampleTimeStamp property.

6.8.2 Adding points

The samples must be added in code. Use AddSamples method to add samples to the end of existing
samples.

chart.ViewXY.SampleDataSeries[0] .AddSamples (samplesArray, false);
// Add samples to the end

To set whole series data at once, and overwrite old samples, assigh the new samples array directly:

If SampleFormat is SingleFloat
chart.ViewXY.SampleDataSeries[0].SamplesSingle

samplesSingleArray;

Or if SampleFormat is DoubleFloat
chart.ViewXY.SampleDataSeries[0].SamplesDouble = samplesDoubleArray;

6.9 SampleDataBlockSeries

SampleDataBlockSeries is a version of SampleDataSeries, fully optimized for real-time applications. It
offers the best possible performance with least CPU and memory consumption, allowing rendering
extremely high number of data points simultaneously. As the name of the series suggests, the data is
internally managed as blocks, which in turn are individually memory-managed. This removes the need
for extremely large continuous linear memory. SampleDataBlockSeries is the optimal series type for real-
time medical monitoring applications, such as ECG/EKG, EEG, industrial monitoring applications,
telemetry, and waveform vibration monitoring.

100 LightningChart® .NET User’s Manual, rev. 10.5

SampleDataBlockSeries works almost similarly to SampleDataSeries. It likewise requires the added data
to be in progressive order and to have a fixed data interval. SamplingFrequency (1 / sample interval)
can be used to set the fixed sample interval. To set the X value (time stamp) where the samples begin,
set FirstSampleTimeStamp property. However, visually SampleDataBlockSeries has fewer formatting
options compared to other line series. Color and Width properties are available to change the color and
width of the line respectively. Furthermore, SampleDataBlockSeries shows only the line, not individual
points.

New samples can be added in code by using AddSamples method. Unlike SampleDataSeries,
SampleDataBlockSeries accepts only float values. PointCount property can be used to get the current
number of samples in the series.

// Add samples to the end.
sampleDataBlockSeries.AddSamples (samplesArray, false);

// Get the total number of samples.
int samplesCount = chart.ViewXY.SampleDataBlockSeries[0].PointCount;

(004 4 O O O O O

B s L S A N L

ik Pt HhE b WMMHMMM
bbb et b b e

Figure 6-47. Several SampleDataBlockSeries in a real-time application.

Copyright LightningChart Ltd 2009-2023 101

6.10 DigitalLineSeries

DigitalLineSeries is a specific type of line series, which displays a line alternating between two Y-values,
for example 0 and 1. It is fully optimized for performance and uses the least amount of memory of all
series types. DigitalLineSeries has fewer configuration option compared to many other series, as it draws
only the line between the data points but not the points themselves. Furthermore, it has only Color and
Width properties to adjust the series appearance.

DigitalLineSeries data points are always in progressive order with fixed intervals. FirstSampleTimeStamp
property sets the X-value of the first data point, while SamplingFrequency control the interval between
the points. Use DigitalHigh and DigitalLow to set the Y-values the line is alternating between. The data
points are added via AddBits() method as arrays of type uint[]. Each value in the array is converted to
respective binary value, thus representing 32 data points. BitCount property can be used to check the
total number of added points.

// Adding a DigitalLineSeries.

DigitallLineSeries dls = new DigitallLineSeries(_ chart.ViewXY,
_chart.ViewXY.XAxes[0], chart.ViewXY.YAxes[O0]);

dls.Color = Colors.Yellow;

dls.Width = 2;

dls.FirstSampleTimeStamp = 0;

dls.Digitallow = 0;

dls.DigitalHigh = 1;

dls.SamplingFrequency = 32;

uint[] data = new uint[] { OxFFFFFFFF, OXFFFFFFFF, OXFFFFFFFF, OxFFFFFFFF,
0x00000000, Oxa54df810, 0x00000000, OxXFFFFFFFF };
dls.AddBits (data, false);
_chart.ViewXY.DigitalLineSeries.Add(dls);

T T T T T T TrTrrT T T T T T T T T e

T T T T T =t
02 04 06 08 10 12 14 16 18 2 2 24 2 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78
title

Figure 6-48. DigitalLineSeries based on the code above.

102 LightningChart® .NET User’s Manual, rev. 10.5

6.11 FreeformPointLineSeries

Demo examples: Scatter points; Map route; Value tracking with markers; Curve node editing

FreeformPointLineSeries - for arbitrary data
HEAVY TO RENDER WHEN POINT COUNT IS VERY HIGH

Points[7] Points[1]
Points[12] // Pointsﬂ —
\
Points[6] - — Points[g] \
\\
/ \\ Points[0]
Points[13] Points[9] oints[3]
Points[11]

Points[y//

Points[5] _
" Points[4]

X values can be in any order

Figure 6-49. Overview of FreeformPointLineSeries

A FreeformPointlLineSeries can present a simple line, points (scatter) or both as a point line.
FreeformPointLineSeries allows drawing line point to any direction from previous point. All line and point
formatting options from PointLineSeries apply. Add the series to chart by adding
FreeformPointLineSeries objects to FreeformPointLineSeries list.

// Add a FreeformPointLineSeries to the chart
chart.ViewXY.FreeformPointLineSeries.Add (freeformPointLineSeries) ;

Figure 6-50. A freeform point line series

Copyright LightningChart Ltd 2009-2023 103

Freeform point line series line points are not automatically destroyed even if DropOldSeriesData is
enabled, and the points are scrolled out of current view. To automatically destroy old series points in
real-time monitoring solution, use point count limiter. Set PointCountLimitEnabled = true and set the
limit to PointCountLimit property. If limiter is enabled, the Points array behaves as a ring buffer after
the point count limit has been reached. The oldest point from Points array can always be found by
retrieving value from OldestPointindex. If needing to read the existing data out of point count limited
buffer, use the following method:

e If OldestPointindex is 0, read from Points[0] till Points[PointCount-1].
e |f OldestPointindex > 0, first read from Points[OldestPointindex] till Points[PointCountLimit-1].

Then, read from Points[0] till Points[OldestPointindex-1].

To directly retrieve the last series point, call GetLastPoint() method.

6.12 LiteFreeformLineSeries

LiteFreeformlineSeries is a lighter version of FreeformPointLineSeries, that is optimized for much faster
performance. However, compared to the regular series, it has less configuration options.
LiteFreeformlLineSeries draws only the line between the data points but not the points themselves and
therefore is not suitable for scatter plots. Furthermore, it has only Color and Width properties to adjust
the series appearance. LiteFreeformLineSeries allows data points to be placed freely. In other words, the
points don’t have to be in progressive order.

Use AddPoints() method to add data point arrays to the series. These arrays should be of type double[,]
where the first value is the data point index while the second value has both X-and Y-values
ActualPointCount() can be called to find out the total number of points.

// Adding a LiteFreeformLineSeries with random data points.
LiteFreeformLineSeries flls = new LiteFreeformLineSeries(chart.ViewXY,
_chart.ViewXY.XAxes[0], chart.ViewXY.YAxes[O0]);

flls.Color = Colors.Red;

flls.Width = 3;

double[,] values = new double[21, 2];

for (int 1 = 0; 1 < 21; 1i++)

{
values[i, 0] = rand.NextDouble() * 20;
values[i, 1] rand.NextDouble () * 100;

}
flls.AddPoints (values, false);
_chart.ViewXY.LiteFreeformLineSeries.Add(flls);

104

LightningChart® .NET User’s Manual, rev. 10.5

6.13 Which line series should be used?
Choosing the line series depends on three main questions: how many data points should be shown
simultaneously, what is the nature of the data points a.k.a are the points in progressive order with fixed

intervals, and how the line should look visually.

The number of data points / performance

Performance-wise it is very important to use the correct series type. For instance, using a
FreeformPointlLineSeries in a real-time application is significantly heavier compared to
SampleDataBlockSeries.
- If the total number of data points is low (< 1000), the series type has no noticeable effect
on performance.
- In real-time applications, use the fastest line series possible based on the nature of the
data points.
The performance order of the series from the fastest to render to the heaviest is:
- DigitallineSeries
- SampleDataSeries / SampleDataBlockSeries
- PointlLineSeries / LiteLineSeries
- FreeformPointLineSeries / LiteFreeformLineSeries

The nature of data points

The nature of data points directly affects what series types can be used.

- If the X-values of the points are not in progressive order, use FreeformPointLineSeries or
LiteFreeformLineSeries.

- If the X-values are progressive but the intervals between the points vary, use
PointlLineSeries or LitelineSeries.

- If the X-values are progressive with fixed data point intervals, use SampleDataSeries,
SampleDataBlockSeries or DigitalLineSeries.

- If the Y-values of the data alternate between two values, consider using
DigitalLineSeries.

Visual appearance

In most cases, there are two versions of the same series type, for instance PointLineSeries and
LiteLineSeries. Choosing one or the other comes to a tradeoff between the performance and being able
to fully modify the visual appearance of the series. In general, all the “lite” series types are faster to
render and use less memory but have less configuration options.
- If data points themselves should be rendered, not just the line, use regular series as “lite”
series draws only the line.
- If modifying the color and the width of the line is enough, use “lite” version of the series.

Copyright LightningChart Ltd 2009-2023 105

w - I
Q = o
g g - S % gh I =4 -
= |3 | |9e |3 |8 = | @ S
S 2|8 |3 |2 |3 | 2|% |7 3
2|8 5|29 |8|8|5 |8
Features 8 | § |2 |3 |3 |5 9|2 |5]|=

= - w = - wn o) o
S | L |8 |®|5|E |52 |2 2
S22 (& |a|“" 3|=]3%
§ é (7] H g g w 3 =]
3 2 |5

Progressive increase of X-values v I vV I vV v | vV |V

Fixed interval v v

Optimized memory and GC usage | v~ v v v

Line Visible v v IV IV IIV|IVI IV IV |V I Y

Points Visible v v v | v |V

Coloring points individually v v | V|V

Y precision is double type v I VIV IV IV I IV |V v

Y precision is float type v v

Y-value based coloring of v v vViviy

line/area

Custom shaping and coloring v v v

XAxis ScaleBreaks v v I VIV IV VIV IV IV I|Y

DataBreaking by NaN or other v v vV I v Iy

value

ClipAreas v v IV IV IiIV|IVI IV IV |V I Y

Tracking value with v vV Iiviy vV 0viy

LineSeriesCursor

Tracking with DataCursor v v I IvI|Iiv IV IV IV IV IV IV

Polynomial regression v

LimitYToStackSegment v v | I VvV IV IV IV IV I VI Y

Line Pattern v v v | v |V v

Series TitlesAutoPlacement v v IV I IV IV IV IV IV I IV I YV

Rendering data into the v v vVivivy

PersistentSeriesRenderinglLayer

ErrorBars v v

Figure 6-51. Table of all features available for each series type.

106

LightningChart® .NET User’s Manual, rev. 10.5

6.14 Advanced line coloring of line series

Demo examples: Line, palette coloring; Line, event-based coloring by indices; Line, event-based coloring

The line color can be changed based on data values, or on other external logic.

6.14.1 Y-value based coloring of line and fill with value-range palette

By enabling UsePalette property of SampleDataSeries, PointLineSeries or FreeformPointLineSeries,
the coloring of line is applied by the ValueRangePalette property. ValueRangePalette contains Y
values and color pairs. ValueRangePalette.Type sets the Gradient or Uniform steps palette.

The palette coloring can be set for Y axis line too. Enable UsePalette property of Y axis and assign the
preferred series in PaletteSeries property.

Figure 6-52. On the left, a Gradient palette is used to color the line based on Y values. On the right, a Uniform palette is
used. UsePalette is enabled for Y-axis as well.

Waveform (amplitude / time)

Whistle_48kHz.wav sfreq = 48 kHz - Left

]

-14000

Figure 6-53. Gradient palette coloring for bipolar signal data. UsePalette for Y-axis is disabled.

Copyright LightningChart Ltd 2009-2023 107

6.14.2 Custom shaping and coloring with CustomLinePointColoringAndShaping event

Custom coloring and coordinate adjustment can be made with

CustomLinePointColoringAndShaping event, which is called just before entering the rendering

stage of the chart. Custom coloring is available with all line patterns (Dash, Dot etc.). However,

gradient coloring can only be applied when LineStyle.Pattern = Solid. The event also has serious

limitations in vector file exports.

2
E
8
>-

Figure 6-54. CustomLinePointColorAndShaping event handler used to change the line color by the specific changing
reference level.

The event arguments have the following info:

CanModifyColors: Colors modification is available.

Colors: Prefilled colors array with LineStyle color. If CanModifyColors is true, modifications can
be done either by assigning new values to prefilled colors, or by creating a new colors array. If
CanModifyColors is false, don’t fill them.

CanModifyCoords: Coordinates modification is available.

Coords: Pre-filled screen coordinates array. If CanModifyCoords is true, modifications can be
done either by assigning new values to prefilled coordinates, or by creating a new coordinates
array. The new array length doesn’t have to be equal to prefilled one. Ensure the length of the
Coords and Colors array are equal when exiting the event handler. If CanModifyCoords is false,
don’t fill them.

HasDataPointlIndices: Only applicable in FreeformPointLineSeries.

DataPointindices: Data point indices included in the coordinate and color arrays. Subsequent
points are skipped in line construction if their X and Y values or coordinates are equal. Using
DataPointIndices info, e.g. a color can be picked for a line point from data point’s PointColor field
or external color array.

SweepPagelndex: If XAxis.ScrolIMode = ‘Sweeping’, tells the page index (0 or 1).

108

LightningChart® .NET User’s Manual, rev. 10.5

6.15 Polynomial regression

Demo examples: Regression Fit, Spline Line

Regression fitting for data points is only available for PointLineSeries. RegressionFitting for the series
allows choosing between line fit and polynomial fit. In the latter case, RegressionPolyOrder can be used
to set the degree of the regression. When RegressionFitting is set other than None option, line and points
are replaced with fitted curve.

For other series it is possible to use MathRoutines.PolynomialRegression() method and replace data
with fitted points.

6.16 High-lowSeries

Demo examples: High-Low; Stacked area; Stock course with previous close; Areas /high-lows; Scale breaks

High-low series presents data as filled area between high and low values. Add the series to chart by
adding HighLowsSeries objects into HighLowSeries list.

//Add high-low series to the chart
chart.ViewXY.HighLowSeries.Add (highlowSeries);

LightningChartUltimate

=)
%2
=)
o
=
o

Used car prices. Futurion 45 LE

Figure 6-55. A high-low series with a marker over it.

Copyright LightningChart Ltd 2009-2023 109

6.16.1 Fill, line and point styles

The fill can be set with Fill property and its sub-properties. Define the line style with LineStyleHigh and
LineStyleLow properties. If the lines should not be visible, set LineVisibleHigh = false, and
LineVisibleLow = false, respectively. Define the point style with PointStyleHigh and PointStyleLow
properties. If the points should not be shown, set PointsVisibleHigh = false, PointsVisibleLow = false

See chapters 6.6.1 and 6.6.2 for line and point style details. When the high value of the data is less than
its Low value, reverse fill is applied in that part. Edit the reversed fill with ReverseFill property.

LightningChartUltimate

a
[%2)
=)
@
42
a

™ Used car prices, Futurion 4.5 LE

Figure 6-56. Fourth data item is given reversed: high value is < low value.

6.16.2 Limits

By enabling Uselimits, series shows different solid coloring above the exceed limit and below deceed
limit. The regular Fill and ReverseFill apply then only for the range between the limits.

110 LightningChart® .NET User’s Manual, rev. 10.5

Price, USD

™ Used car prices. Futurion 4.5 LE

Figure 6-57. UseLimits = true, ExceedLimit = 48000 and DeceedLimit = 28000.

6.16.3 Coloring by value-range palette

By enabling UsePalette, the fill uses ValueRangePalette steps. Uniform and Gradient coloring are both
supported.

This car

[M 7 Used car prices, Futurion 4.5 LE

~ Manufacturing year

Figure 6-58. UsePalette = True, several steps defined in ValueRangePalette. Uniform coloring.

Copyright LightningChart Ltd 2009-2023 111

6.16.4 Adding data

The data values must be added in code. The data must be given in ascending order by X values,
Points[i+1].X 2 Points[i].X.

Use AddValues(HighLowSeriesPoint[], bool invalidate) method to add data values to the end of existing
values array.

HighLowSeriesPoint[]dataArray = new HighLowSeriesPoint[6]
dataArray [0] = new HighLowSeriesPoint (2004, 37000, 22000

’

)
dataArray [1l] = new HighLowSeriesPoint (2005, 35000, 27000);
dataArray [2] = new HighLowSeriesPoint (2006, 47000, 25000);
dataArray [3] = new HighLowSeriesPoint (2007, 37000, 49000);
dataArray [4] = new HighLowSeriesPoint (2008, 40000, 50000);
dataArray [5] = new HighLowSeriesPoint (2009, 56000, 56000);

//Add data to the end
chart.ViewXY.HighLowSeries[0] .AddValues (dataArray, true);

To set whole series data at once while overwriting old data, assign the new data array directly:

//Assign the data into points array
chart.ViewXY.HighLowSeries[0].Points = dataArray;

112 LightningChart® .NET User’s Manual, rev. 10.5

6.17 AreaSeries

Demo examples: Area; Areas; Data breaking in series; Multiple legends; Custom axis ticks

Area series presents data as filled area between base level and values. Area series is quite similar to
HighLowSeries described in chapter 6.16, but simpler. Add the series to chart by adding AreaSeries
objects into AreaSeries list.

chart.ViewXY.AreaSeries.Add (areaSeries); //Add area series to the chart

Area Plot
70000
65000
60000
55000
50000
45000
© 40000
35000
30000
25000
20000
15000
10000

5000

o=
0 5 150 200 250 3 350 400 450 500 550 600 650 700 750
X axis title

Figure 6-59. Three area series all having BaseValue = 0.

Set base level with BaseValue property. Set the preferred fill style with Fill property. Line style can be
set with LineStyle property and point style with PointStyle property respectively. Exceed and deceed
limits can be used like in HighLowSeries.

6.17.1 Adding data

The data values must be added in code. The data must be given in ascending order by X values,
Points[i+1].X 2 Points[i].X.

Copyright LightningChart Ltd 2009-2023 113

Use AddValues(AreaSeriesPoint[], bool invalidate) method to add data values to the end of existing
values array.

AreaSeriesPoint[] dataArray = new AreaSeriesPoint[6];
dataArray [0] = new AreaSeriesPoint (2004, 37000);
dataArray [1] = new AreaSeriesPoint (2005, 35000);
dataArray [2] = new AreaSeriesPoint (2006, 47000);
dataArray [3] = new AreaSeriesPoint (2007, 37000);
dataArray [4] = new AreaSeriesPoint (2008, 40000);
dataArray [5] = new AreaSeriesPoint (2009, 56000);

//Add data to the end
chart.ViewXY.AreaSeries[0] .AddValues (dataArray, true);

To set whole series data at once while overwriting old data, assign the new data array directly:

//Assign the data into points array
chart.ViewXY.AreaSeries[0] .Points = dataArray;

6.18 BarSeries

Demo examples: Vertical; Horizontal; Negative values; Stacked Bars

BarSeries allows displaying data in horizontal or vertical bars.

=1
kil 3 0
axis title

M Datal | Data2 | Data3 [MData4 [/ Data5
M Datab | " Data? | MData8 [M Data3 [W Datal10

M Datal [Data2 [Data3 [/ MData4 [Data§
M = Datab i Data? [W Data8 | W Data9 [W Datal0

Figure 6-60. Bars series, vertical and horizontal.

Use Values array property to store the values of a bar series. Add values with AddValue(...) method.
Update an existing value by given value index with SetValue(...) method. The values are of type
BarSeriesValue, which has the following fields:

o Value The bar length.

e location X axis location of the bar (vertical presentation) or Y axis location (horizontal
presentation).

o Text The text that appears in the bar.

114

LightningChart® .NET User’s Manual, rev. 10.5

Use LabelStyle property of a bar series to control how the bar value label appears on the chart. The label
value text is set by AddValue(...) or SetValue(...) method parameter. Various fill styles can be used by
setting Fill property and its sub-properties.

Use BarViewOptions property of the chart to control how the bars are displayed.
BarViewOptions.Orientation to selects between Horizontal and Vertical bar orientation.

BarViewOptions.Grouping allows grouping the bars by value indices, by indices using width fitting or by
location values. It brings values from different bar series visually together. If no grouping is wanted, use
BarViewOptions.Grouping.BylLocation and set different Location field for every BarSeriesValue object.
Use width fitting properties to adjust the spaces between columns and aside them. When no width fitting
is used, BarThickness property of the bar series determines the bar width. The groups can be stacked by
setting BarViewOptions.Stacking to Stack or to StackStretchToSum. When using StackStretchToSum,
define the target sum by setting StackSum property. It is 100 by default to represent 100 %.

PC 4, Game A
PC 4, Game B

Figure 6-61. Bars series Grouping = Bylndex, Stacking = None.

1000 —

Figure 6-62. Bars series Grouping = Bylndex, Stacking = Stack.

Copyright LightningChart Ltd 2009-2023 115

100 4 -

PC 45Game A

Figure 6-63. Bars series Grouping = Bylndex, Stacking = StackStretchToSum. StackSum = 100.

Baselevel property in BarSeries is the series minimum value for all values and sets bar start position. In
Stacked view, it will increase (if positive) or decrease (if negative) the size of the bar. If StackedToSum,

the bar size is relative and calculated like Stacked.

Vertical bars

58

Figure 6-64. Baselevel set to -10. Bar values are 10, 20, 35, 50, 58, 45, 30, 25, 20, 5.

116 LightningChart® .NET User’s Manual, rev. 10.5

6.19 StockSeries

Demo examples: Segments with splitters; Stocks and bars; Scale breaks; Statistic analytics

Stock series allow stock exchange data visualization in candle-stick or stock bars format. Several stock
series can be added in the same chart by adding multiple StockSeries objects in StockSeries list property.
Select the style with Style property. The options are Bars, CandleStick and OptimizedCandleStick.

OptimizedCandleStick is used by default for performance reasons, starting from v.8.4. However,
OptimizedCandleStick has only limited set of fill effects available - it supports Solid and left-to-right
direction Linear fill. Set Style to CandleStick for more advanced appearance options, including Bitmap,
Radial, RadialStretched and Cylindrical fills and borders for the candles (FillBorder property). For
maximum rendering performance, use Bars style, with StickWidth = 1.

Set the coloring and filling options with ColorStickDown, ColorStickUp, FillDown and FillUp properties.
Adjust the stick width in pixels with StickWidth property, and the total data item width with ltemWidth
property. StockSeries can be set to render before the line series, by setting Behind = True.

// Modifying StockSeries properties.
stockSeries.Style = StockStyle.OptimizedCandleStick;
stockSeries.ItemWidth = 13;

stockSeries.StickWidth = 3;

stockSeries.Behind = false;

StockSeries also has data Packing property, which when enabled, causes data values close to each other
be packed to a single rendered item. This improves performance, especially with larger data sets, but
the data might not be as accurate as without packing.

// Enabling data packing.
stockSeries.Packing = StockSeriesPacking.On;

Stockrise Busters, Inc./ USD

Figure 6-65. StockSeries with CandleStick Style. A light blue PointLineSeries is set to go through all Close values.

Copyright LightningChart Ltd 2009-2023 117

Stockrise Busters, Inc./ USD Line fit region

ne fit - 25D
ne fit region
Bus

Stockrise Busters, \nc.\
\o=
Line fit+ 25D __.---""""

Line fit - 25D __..===""

Figure 6-66. StockSeries with Bars Style. Line series are used for showing linear regression fit and offset of that line (2 *
standard deviation). A band is used for selecting a date range for line fit.

6.19.1 Setting data to StockSeries

Create a data array and set the array items. Each item has the following fields:

Date DateTime value (year, month, day)
Open Opening value of the day

Close Close value of the day

Low The lowest value during day

High The highest value during day
Transaction The total trading sum (optional)
Volume Count of shares traded (optional)

Keep the data always in ascending order by Date value (oldest date first).

// Create data array
StockSeriesData[] data = new StockSeriesDatal[] {
new StockSeriesData(2010,09,01, 24.35, 24.76, 24.81, 23.82,

269210, 6610451.55),

new StockSeriesData(2010,09,02, 24.85, 24.606, 24.85,
24.53, 216395, 5356858.225),

new StockSeriesData(2010,09,03, 24.80, 24 .84, 25.07,
24.60, 164583, 4084950.00),

new StockSeriesData (2010,09,06, 24.85, 25.01, 25.12,
24.84, 118367, 2950889.31)

}i
// Assign the data array to series
chart.ViewXY.StockSeries[0].DataPoints = data;

118 LightningChart® .NET User’s Manual, rev. 10.5

6.19.2

6.19.3

Setting X axis to date display

chart.ViewXY.XAxes[0] .ValueType = AxisValueType.DateTime;

chart.ViewXY.XAxes[0] .LabelsAngle = 90;

chart.ViewXY.XAxes[0] .LabelsTimeFormat =
System.Globalization.CultureInfo.CurrentCulture.DateTimeFormat
.ShortDatePattern;

chart.ViewXY.XAxes[0] .MajorDiv = 24 * 60 * 60; // Major division is one day

in seconds

chart.ViewXY.XAxes[0] .AutoFormatLabels = false;

// Set datetime origin

chart.ViewXY.xXaAxes[0] .DateOriginYear = datal[0].Date.Year;
[0] .Date.Month;
]

.Date.Day;

chart.ViewXY.xXaAxes[0] .DateOriginMonth = data
chart.ViewXY.XAxes[0].DateOriginDay = datal[0

Set the X axis range suitable for data:

// X-axis stretched half a day at both ends. Use first and last date value.

chart.ViewXY.XAxes[0] .SetRange (

chart.ViewXY.XAxes[0] .DateTimeToAxisValue (data[0] .Date) - 12 * 60 * 60,
chart.ViewXY.XAxes[0] .DateTimeToAxisValue (data[data.Length - 1].Date) +
12 * 60 * 60);

Custom formatting of appearance

The StockSeries has CustomStockDataAppearance event handler, which can be used to format

appearance of series data items individually, overriding the generic fill and color styles applied with
properties. In the event handler, modify width and colors for specific points.

T
o
=)
&
=]
o

[¥l — Stockrise Busters. Inc. ™ Stockrise Busters,

Figure 6-67. CustomStockDataAppearance used to highlight specific data items with greater width and brighter gradient
colors.

Copyright LightningChart Ltd 2009-2023 119

6.19.4 Applying Scale breaks

To cut off non-trading hours and days, see 6.3.2.

6.20 PolygonSeries

Demo examples: Polygons; Box-whisker plot; Ternary plot; Image viewer; Zoomable 2D pie
PolygonSeries renders a fill and a borderline, by given border path.

Set the filling preferences in Fill property. Use Border property of PolygonSeries to set the border line
style.

E
RolygonfAl

Polygon C

Polygonib]

Polygon A [V @ Polygon B [V @ Polygon C [[Polygon D ¥ (1) Polygon E

45 50 55
X axis title

Figure 6-68. Several polygons.

6.20.1 Setting data to a Polygon

Set the path points in Points property. PolygonSeries has an automatic path closing feature. If the
last point is not connected to the first point, the chart will do that automatically.

The following shows how to assign the points of the previous picture’s transparent teal polygon’s
path:

120 LightningChart® .NET User’s Manual, rev. 10.5

polygon.Points = new PointDouble2D[] {

new
new
new
new
new

PointDouble2D(7,12),
PointDouble2D(6,9.5),
PointDouble2D(7.5,5),
PointDouble2D(10,6),
PointDouble2D(9,11)};

6.20.2 Enabling complex / intersecting fills

Set IntersectionsAllowed = True to enable polygon path to intersect itself. Without this property

enabled, when intersecting the path, the fill will appear all garbled up. By default, the property is False

for performance reasons, as detecting and rendering intersection cases is heavy.

Figure 6-69. Polygon with intersecting path, with IntersectionsAllowed = True.

6.21 LineCollections

Demo examples: Line Collections; Line spectrogram; Stem plot

Polygon Plot

T
18
X axis title

i
20

A LineCollection is a collection of line segments. Each line segment is a line going from point A to B. One

LineCollection can contain thousands of line segments. LineCollection is extremely efficient in rendering

of thousands of distinct line segments, in contrast to PointLineSeries, FreeformPointlLineSeries or

SampleDataSeries. PointLineSeries, FreeformPointLineSeries or SampleDataSeries are more efficient in

rendering continuous polylines of millions of points.

Copyright LightningChart Ltd 2009-2023

121

Use LineStyle property to control the line color, style and width. Set the line segments in Lines property.
Add the LineCollection object in ViewXY.LineCollections list property.

LineCollection Example

M — Bars M - - roiyline M Triangle mesh

T t t t T t t t t t -l
100 105 11,0 115 120 125 130 135 140 145 154

Figure 6-70. Three LineCollections in use. Green acts as very rapidly rendering bars, yellow as a polyline, and red as an
arbitrary triangle wireframe mesh.

6.21.1 Setting data to a LineCollection

SegmentLine structure consists of four fields:

AX
AY
BX
BY

Add the SegmentlLines array to Lines property as follows:

Start point, X
Start point, Y
End point, X
End point, Y

lineCollection.Lines = new SegmentLine[] {

new SegmentlLine(6,25,8,30),
new SegmentlLine(8,30,7,40),
new SegmentlLine(7,40,10,40),
new SegmentlLine(10,40,12,28) };

6.21.2 Solving individual segments

GetSegmentsAtPoint() method allows checking which individual segment line is at given position, for

example under mouse coordinates. It returns a list of integers (segment line indexes).

List<int> list = _chart.ViewXY.LineCollections[@].GetSegmentsAtPoint(xCoordinate,
yCoordinate);

122

LightningChart® .NET User’s Manual, rev. 10.5

6.22 IntensityGridSeries

Demo examples: Heat map; Spectrogram; Intensity grid mouse control

IntensityGridSeries allows visualizing M x N array of nodes, colored by assigned value-range palette. The
colors between nodes are interpolated. IntensityGridSeries is an evenly-spaced, rectangular series in X
and Y dimension. This series allows rendering contour lines, contour line labels, and wireframe as well.

AssignableXAxes Strina[] Amray
Assignabley Axes Strina[] Amray
AszsignXAxisindex 0

Assign’f Axisindex 0
ContourLineLabels

CortourLine Style

CortourLine Type ColorLine
Data IntensityPoint[.] Amay
DigableDrag ToAnaotherAxis True
FastContourZoneRange 1

Fill Paletted
Fulllnterpolation Falze
IncludelnAuto Fit True
InitialValue 0
LegendBoxIndex 0
LegendBox Units “C
LegendBoxValuesFormat 0
LegendBoxValue Type Mumber
LimitY ToStack Segment False
MouseHighlight None
Mouse Interaction False
Optimization DynamicData
PixelRendering Falze
RangeMaxx 100
RangeMaxy 100
RangeMinX 0
RangeMint 0
ShowlInLegendBox True
ShowModes Falze

SizeX 400

Sizer 240

Stencil

Title

ToneColor Il Elack
TraceMouseCell True
ValueRangeFalette

Visible True
Wireframe Line Style

Wireframe Type MNone

Figure 6-71. IntensityGridSeries properties.

Copyright LightningChart Ltd 2009-2023

123

M Heat map
100

Figure 6-72. IntensityGrid series showing a heat map presentation. Legend box shows the value-range color palette.

The data is stored in Data property as two-dimensional array. Each array item is of type IntensityPoint.
Store the data value of each node in Value field of IntensityPoint structure, which tells what color should
be used from the ValueRangePalette.

col0 coll col2 col3 col4
RangeMaxY — row6
rows
row4
row3
row2
rowl
RangeMinY — rowO0
RangeMinX RangeMaxX

Figure 6-73. IntensityGridSeries nodes. SizeX =5, SizeY = 7.

124 LightningChart® .NET User’s Manual, rev. 10.5

Node distances are automatically calculated as

RangeMaxX — RangeMinX
SizeX -1

node distance X =

RangeMaxY — RangeMinY
SizeY — 1

node distance Y =

6.22.1 Setting intensity grid data

e Set Xrange by using RangeMinX and RangeMaxX properties, to order the minimum and maximum value
of assigned X axis.

e SetYrange by using RangeMinY and RangeMaxY properties, to order the minimum and maximum value
of assigned Y axis.

e Set SizeX and SizeY properties to give the grid a size as columns and rows.

e Set Value for each node:

Method, with Data array index

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)
{
for (int nodeIndexY = 0; nodeIndex¥Y < rowCount; nodeIndexY ++)
{
intensityValue =//some height value.
gridSeries.Data[iNodeX, iNodeY].Value = intensityValue;
}
}

gridSeries.InvalidateData(); //Notify new values are ready and to refresh

Alternative method, usage of SetDataValue

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)
{
for (int nodeIndexY = 0; nodeIndexY < rowCount; nodelIndex¥Y ++)
{
intensityValue =//some height value
gridSeries.SetDataValue (nodeIndexX, nodeIndexY,
0, //X value is irrelevant in grid
0, //Y value is irrelevant in grid
intensityValue,
Color.Green); //Source point colors are not used in this
example, so use any color here
}
}

gridSeries.InvalidateData(); //Notify new values are ready and to refresh

Copyright LightningChart Ltd 2009-2023 125

Setting Values only to existing grid

When the geometry of IntensityMesh, or SizeX or SizeY for IntensityGrid series doesn’t change while data
is changing rapidly, it is most advantageous to use SetValuesData method. Since it accepts Double[][]
format data array, scrolling or re-ordering rows or columns is quick. Especially when combined with
PixelRendering property (see 6.22.4), it is a very effective approach for high-resolution scrolling
spectrogram visualization. Note that when PixelRendering is disabled with external data array set by
SetValuesData, Data property can’t be null.

Setting Colors only to existing grid

When the geometry of IntensityMesh, or SizeX or SizeY for IntensityGrid series doesn’t change while data
is changing rapidly, it is most advantageous to use SetColorsData method. It accepts int[][] format values,
i.e. ARGB values that GPU accepts directly. With this kind of data array, scrolling or re-ordering rows or
columns is quick. Especially when combined with PixelRendering property (see 6.22.4), it is a very
effective approach for high-resolution scrolling spectrogram visualization. Note that when
PixelRendering is disabled with external data array set by SetColorsData, Data property can’t be null.

6.22.2 Creating intensity grid data from bitmap file

Demo examples: Heat map

Create a surface from a bitmap image. Use SetHeightDataFromBitmap method to achieve this. The
series Data array property gets the size of the bitmap size (if no anti-aliasing or resampling is used).
For each bitmap image pixel, Red, Green and Blue values are summed. The greater the sum, the
greater will be the data value for that node. Black and dark colors get lower values and bright and

white colors get higher values.

-
-
©
-
-
»
»
-
©
=
»
-
o
»
»
=
:

Figure 6-74. Source bitmap and calculated intensity values data. Dark values stay low and bright values get higher values.

126 LightningChart® .NET User’s Manual, rev. 10.5

6.22.3 Fill styles

Use Fill property to select the filling style. The following options are available

e None: By using this, no filling is applied. This is the selection to use with wireframe mesh or plain
contour lines.

e FromSurfacePoints: The colors of the Data property nodes are used.

e Toned: ToneColor applies

e Paletted: See chapter 6.16.5.

Enable Fullinterpolation property to use enhanced interpolation method in the fill. Note that it will
cause more CPU and GPU usage. By using full interpolation, the fill quality is better, but can be seen
only when the data array size is quite small.

6.22.4 Rendering as pixel map

By enabling PixelRendering property, the nodes are rendered as pixels, or rectangles. This is a very high-
performance rendering style e.g. for real-time high-resolution thermal imaging applications. Note that
when this rendering mode is selected, many other options are disabled, such as contour lines, wireframe
and interpolation. If logarithmic axes are used, the logarithmic transformation is only applied to corners
of the series, the pixels in the bitmap remain evenly spaced and no logarithmic transformation is applied
to them.

LightningChartUltimate

Figure 6-75. PixelRendering = true.

Copyright LightningChart Ltd 2009-2023 127

6.22.5 ValueRangePalette

With ValueRangePalette property, define color steps for value coloring. ValueRangePalette can be used
for:

e Fill (see chapter 6.22.3)
e Wireframe (see chapter 6.22.6)
e Contour lines (see chapter 6.22.7)

Define several steps for contour palette. Each step has a height value and the corresponding color.

Note! 20 steps are precompiled and loaded fast. With higher step counts, several seconds delay can be
expected when initializing the chart.

Figure 6-76. On the left, IntensityGridSeries Fill is set to Paletted and Palette Type is set to Gradient. On the right, Palette
Type is set to Uniform.

The palette is defined with MinValue, Type and Steps properties. For Type, there are two choices:
Uniform and Gradient. The contour palettes (check the legend boxes) of the previous figures show:

e MinValue: -50

e Type: Uniform

e Steps:
e Steps[0]: MaxValue: -10, Color: Blue
e Steps[1]: MaxValue: 10, Color: Teal
e Steps[2]: MaxValue: 25, Color: Green
e Steps[3]: MaxValue: 35, Color: Yellow
e Steps[4]: MaxValue: 60, Color: Red
e Steps[5]: MaxValue: 100, Color: White

The values below the first step value are colored with the first step’s color.

128 LightningChart® .NET User’s Manual, rev. 10.5

6.22.6 Wireframe

Use WireframeType to select the wireframe style. The options are:

e None: no wireframe

e Wireframe: a solid color wireframe. Use WireframeLineStyle.Color to set the color

o WireframePaletted: the wireframe coloring follows ValueRangePalette (see chapter 6.16.5)

e WireframeSourcePointColored: the wireframe coloring follows the color of grid nodes

e Dots: solid color dots are drawn in the grid node positions

e DotsPaletted: dots are drawn in the grid node positions and colored by ValueRangePalette

e DotsSourcePointColored: dots are drawn in the grid node positions, coloring follows the color of
grid nodes

The wireframe line style (color, width, pattern) can be edited by using WireframeLineStyle.

Note! Palette colored wireframe lines and dots are available only when WireframelLineStyle. Width
=1 and WireframelineStyle.Pattern = Solid.

6.22.7 Contour lines

Demo examples: Heatmap color spread; Contours with labels

Contour lines can be used with fill and wireframe properties. By setting ContourlLineType property,
contour lines can be drawn with different styles:

e None: no contour lines are shown

e FastColorZones: The lines are drawn as thin zones on palette step end. Allows very powerful
rendering, which suits very well for continuously updated or animated surface. Steep value
changes are shown as thin line, while gently sloping height differences are shown with thick zone.
Each line uses the same color defined with ContourlLineStyle.Color property. The zone width can
be set by FastContourZoneRange property. The value is in Y axis range.

e FastPalettedZones: Like FastColorZones, but line coloring follows ValueRangePalette options
(see chapter 6.22.5).

e ColorLine: Like FastColorZones, but the contour lines are actual lines. Rendering takes longer and
is not recommended for continuously updated or animated surface. The line width can be
adjusted with ContourLineStyle. Width property.

e PalettedLine: Like ColorLine, but line coloring follows ValueRangePalette options.

Copyright LightningChart Ltd 2009-2023 129

%83 338384
#2838 3 X8 3 8 4

B #3833 338884
B #3833 3383884

Figure 6-77. On the top-left, ContourLineType = FastColorZones. On the top-right, ContourlLineType = FastPalettedZones.
On the bottom -left, ContourLineType = ColorLine. On the bottom-right, ContourLineType = PalettedLine

130 LightningChart® .NET User’s Manual, rev. 10.5

6.22.8 Contour line labels

When contour lines are visible, numeric values can be shown within the line paths.

Color Il b=k

[> Font Segoe Ul, 15pt, style=Bold
Labels MumberFormat 0.0
Wisible True

i Data surface
100.0

Figure 6-78. The properties of ContourLineLabels and the result

Use LabelsNumberFormat for custom string formatting, for example setting the number of decimals.

6.23 IntensityMeshSeries

Demo examples: Animated intensity mesh; Intensity mesh, static geometry; Intensity mesh, circle/polar
geometry

IntensityMeshSeries is almost similar to IntensityGridSeries. The biggest difference is that series nodes
can be positioned arbitrarily in X-Y space. In other words, the series does not have to be rectangular.

Wireframe lines can be set visible with WireframeType property, and nodes can be shown by setting
ShowNodes true.

Copyright LightningChart Ltd 2009-2023 131

IntensityMesh

2
-2
<
©
>

M intensity mesh

00 300 80,0 150,0 Units

50
X axis title

Figure 6-79. IntensityMeshSeries with freely positioned X and Y values for each node. WireframeType = Wireframe and

ShowNodes = true.

col0 coll col2 col3

row3

row2

rowl

row0

Figure 6-80. Intensity mesh nodes. SizeX = 4, SizeY =4.

132 LightningChart® .NET User’s Manual, rev. 10.5

6.23.1 Setting intensity mesh data, when geometry changes

Follow these instructions, when the X, Y and Value fields are updated in the same time.

e Set SizeX and SizeY properties to give the mesh a size as columns and rows.
e Set X, Y and Value for all nodes:

Method, with Data array index

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)

{

for (int nodeIndex¥Y = 0; nodelIndex¥Y < rowCount; nodelIndexY ++)

{
meshSeries.Data[nodeIndexX, nodelndexY].X = xValue;
meshSeries.Data[nodeIndexX, nodeIndexY].Y = yValue;
meshSeries.Data[nodeIndexX, nodeIndexY].Value = value;
}
}

meshSeries.InvalidateData(); //Notify new values are ready to refresh

Alternative method, usage of SetDataValue

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodelIndexX ++)
{
for (int nodeIndexY = 0; nodelIndex¥Y < rowCount; nodelIndexY ++)
{
meshSeries.SetDataValue (nodeIndexX, nodelIndexyY,
xValue,
yValue,
value,

Color.Green); //Source point colors are not used in

example, so use any color here
}
}

meshSeries.InvalidateData(); //Notify new values are ready to refresh

6.23.2 Setting intensity mesh data, when geometry does not change

this

Follow these instructions, when only the Value fields of Data array IntensityPoint structures are updated.
This is the performance optimized way for updating data for example in thermal imaging or
environmental data monitoring solutions, where X and Y values of each node stay at the same location.

Copyright LightningChart Ltd 2009-2023

133

6.23.2.1 C(Creating the series and its geometry

e Set Optimization to DynamicValuesData
e Set SizeX and SizeY properties to give the mesh a size as columns and rows.
e Set X, Y and Value for all nodes:

for (int nodeIndexX = 0; nodelIndexX < columnCount; nodelndexX ++)

{
for (int nodeIndexY = 0; nodeIndex¥Y < rowCount; nodeIndexY ++)
{
meshSeries.Data[nodeIndexX, nodelIndexY].X = xValue;
meshSeries.Data[nodeIndexX, nodelIndexY].Y = yValue;
meshSeries.Data[nodelIndexX, nodelIndexY].Value = value;

}
}

meshSeries.InvalidateData(); //Rebuild geometry from nodes and repaint

6.23.2.2 Updating the values periodically

e Set only values for all nodes:

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)

{
for (int nodeIndex¥Y = 0; nodelIndex¥Y < rowCount; nodelIndexY ++)
{
meshSeries.Data[nodelIndexX, nodelIndexY].Value = value;
}
}

meshSeries.InvalidateValuesDataOnly(); //Only data values are updated

6.24 Bands

Demo examples: Bands; Statistic analytics; Long data analysis; Zoom bar chart

Bands can be considered as series. They have the same user interface actions as other series, but one
band series contains only one band. A band is a vertical or horizontal area reaching from a margin across
to another. A band can be bound to a Y axis or X axis using the Binding propert. If the band is bound to Y

axis, AssignYAxisindex property must also be set. If the series is bound to X axis, ignore AssignYAxisIndex
property, or set it as unassigned (-1).

134 LightningChart® .NET User’s Manual, rev. 10.5

LightningChartUItimate

Yaxis bound ban

)
a

B s e e m rorer - 300

38 40 42 44 46 48 S50 52 54 56 58 60 62 64

Figure 6-81. A couple of bands with line series

If the band should be behind the line or bar series, set Behind property true. Band edges are set by
ValueBegin and ValueEnd properties, which are values of the bound axis. Band can be dragged to
another location with mouse. Resize the band by dragging it from the edge, which updates then the
dragged edge value, ValueBegin or ValueEnd.

6.25 Constant lines

Demo examples: Oscilloscope; Lissajous monitor; Signal reader; Areas; Segments with splitters

Like bands, constant lines can be considered as series. Constant lines are bound to Y axis, and it
represents one horizontal line, ranging from graph left edge to right edge. Set the level via Value
property. Constant lines can be vertically moved by dragging with mouse. By setting Behind property
true, the constant line is drawn behind line and bar series, otherwise it is drawn in front of them.

Copyright LightningChart Ltd 2009-2023 135

LightningChartUitimate

Upper limit |

Lower limit

Figure 6-82. Some constant lines around a sine line series.

6.26 Annotations

Demo examples: Annotations; Custom rendering; Intensity grid mouse control; Multi-channel cursor
tracking; Stocks and bars; Annotations table

Annotations allows displaying mouse-interactive text labels or graphics anywhere in the chart area.
Annotations can be moved around by mouse, resized, rotated, their target and location can be changed
etc. Alternatively, they can be controlled by code. Annotations are great also when custom graphics
must be rendered on the screen, as they can be rendered in different styles and shapes. Create
AnnotationXY objects in ViewXY.Annotations collection.

By moving mouse over an annotation, it goes into mouse-interactive edit state, allowing relocating the
annotation, resizing it, rotating it, and determining where the arrow points to.

Normal state Edit state

Figure 6-78. Move mouse over the annotation to enter the editing state. Move mouse away to leave the edit state.

136 LightningChart® .NET User’s Manual, rev. 10.5

LightningChartUltimate

RoundedCallout
RelativeToTarget

l

Figure 6-79. AnnotationXY objects with various styles, placed around a line series. Use Style property to select the shape.

6.26.1 Controlling target and location

Target is the ending point of the arrow, the point that the arrow or callout tip points to. Target can be
set in axis values or in screen coordinates. Use TargetCoordinateSystem to select between AxisValues
or ScreenCoordinates. When AxisValues is selected, TargetAxisValues property sets where the arrow
line points to (end of the arrow line). Use TargetScreenCoords to set it in screen coordinates instead.

Location is the starting point of the arrow. It can be set by screen coordinates, axis values, or as relative
offset from Target. Use LocationCoordinateSystem to select, and LocationScreenCoords,
LocationAxisValues or LocationRelativeOffset to control the location by the selected method. Location
is also the center point of text area rotation.

Anchor property controls how the text area is placed at Location. By setting Anchor.X =0.5 and Anchor.Y
=0.5, the beginning of the arrow is in the middle. When setting Anchor.X 0.1 and Anchor.Y = 0.25, arrow
start is near the upper left corner as the following figure illustrates:

Copyright LightningChart Ltd 2009-2023 137

Figure 6-83. Anchor values explained. Current Anchor.X = 0.1 and Anchor.Y = 0.25. When the anchor values are between 0...1,
the arrow start point is inside the text area.

6.26.2 Using mouse to move, rotate and resize

Location/
anchor adjust Rotate

Resize (X)

Resize (X +Y)

Target Resize (Y)

Figure 6-84. Annotation mouse-interactive nodes.

Drag from Target to move the end of the arrow. Drag from text area to set new Location. By dragging
from round location/anchor node, Anchor and Location properties can be adjusted at the same time,
keeping the text box in the same place.

By holding Shift key down while dragging from X or Y resize node, a symmetrical operation is used, both
sides are adjusted at same time. By holding Shift key down while dragging from a corner resize node
(X+Y), resizing maintains the aspect ratio. In rotate operation, Shift key snaps the rotate angle to nearest
multiple of 15 degrees.

138 LightningChart® .NET User’s Manual, rev. 10.5

6.26.3 Adjusting appearance

Select the annotation shape by setting Style property. The options are: Rectangle, RectangleArrow,
RoundedRectangle, RoundedRectangleArrow, Arrow, Callout, RoundedCallout, Ellipse, EllipseArrow,
Triangle and TriangleArrow.

With styles with arrow, use ArrowlineStyle, ArrowStyleBegin and ArrowStyleEnd to control the arrow
design. As arrow end styles, there are options: None, Square, Arrow, Circle and Caliper.

Use Fill to modify the fill of the annotation. The appearance of the editing state mouse-interactive nodes
can be changed from NibStyle. TextStyle controls the font settings and text alignment inside the text
area. BorderLineStyle and CornerRoundRadius control the border line appearance.

6.26.4 Size settings

Sizing property controls how the annotation text box is to be sized:

e Automatic adjusts the size by the contents, and leaves AutoSizePadding space to the borders.
e AxisValuesBoundaries allows the size of the annotation to be set by axis values. Use
AxisValuesBoundaries.XMin, XMax, YMin and YMax for defining them.

e ScreenCoordinates enables settingsize by the screen coordinates. Use SizeScreenCoords.Height
and Width.

6.26.5 Keeping text area visible

When KeepVisible is enabled, the annotation text area is forced inside the graph. The annotation won't
move outside the graph when moving it by mouse or code. When panning the graph view or adjusting
axes, the annotations are repositioned to show inside the graph.

6.26.6 Displaying annotation over axes

By setting RenderBehindAxes = True, annotation is shown under axes. All clipping and Z ordering
features are not feasible in that case. RenderBehindAxis has no effect if ClipinsideGraph is set true.

Copyright LightningChart Ltd 2009-2023 139

Annotation Annotation

6 f : 6

Figure 6-85. On the left RenderBehindAxes = True, on the right RenderBehindAxes = False. CliplnsideGraph is set False in
both cases.

6.26.7 Clipping inside graph

When ClipinsideGraph is enabled, the annotation is clipped inside the graph. When it’s disabled, the
annotation is rendered also in the margin area of the chart.

By enabling ClipWhenSweeping, the annotation doesn’t show up in the sweeping gap area when
ScrollMode is set Sweeping.

6.26.8 Controlling the Z order

By setting Behind property to its default value, False, the annotation appears on top of series. By setting
it True, it is rendered before the series, thus appearing under them.

The annotations appear in the order they exist in Annotations list, while keeping the Behind filter as a
master controller. Annotations Z order can be changed quickly by using ChangeOrder method of
annotation for example in a mouse event handler. The options for order change are:

e BringToFront brings the annotation to topmost
e SendToBack sends to back

e MoveBack moves one step backwards

e MoveFront moves one step forwards

6.26.9 LayerGrouping performance optimization

When having hundreds of annotations with visible text, the delay of text rendering starts to play a
significant role. By default, text rendering follows the Z order, keeping the text firmly within an
annotation.

140 LightningChart® .NET User’s Manual, rev. 10.5

The performance can be improved by setting LayerGrouping = True, and the chart will use only two flat
annotation text layers. One for annotations with Behind set to True, and other for annotations with
Behind set to False. It greatly improves performance. On the other hand, the text will be rendered wrong
if there are other annotations overlapping others.

RoundedCallout RoundedCallout

Relative To Target Relative ToTarget
gdRectangleAmo Callout Reusd€dRectangleAmow Callout
RectangleAmow = tivenTar;:tg s Relative ToTarget RectangleAmow RiativeTo Targst Relative To Tanget
Relative To Target N Relative ToTarget

Figure 6-86 On the left LayerGrouping = False. On the right, LayerGrouping = True, Z order of texts is lost.

When using Style = Arrow or by setting the annotation fill not visible, the restriction of Z order typically
doesn't show up.

6.26.10 Converting between axis values and screen coordinates

In some cases, Location or Target may be wanted to be defined in mixed configuration. X in screen
coordinates and Y in axis values, or vice versa. Axes have ValueToCoord method for converting an axis
value to a screen coordinate, and CoordToValue to convert a screen coordinate to an axis value as
described in chapter 6.2.12.

Copyright LightningChart Ltd 2009-2023 141

6.27 Legend box

Demo examples: Multiple legends; Heatmap legends; Segments with splitters

Starting from v.8, ViewXY supports multiple legend boxes in the same graph. Insert these legend boxes
in ViewXY.LegendBoxes collection.

AlignmentinSegmentGap Mear
AlignmentinVericalMargin -~ Center

AllowMouse Resize True

AutoSize True

BorderColor] 40, 255, 255, 255
Border\Width 1

Categorzation Mone

CategoryColaor [] White
CategoryFont Segoe Ul 10pt, style=Bold
CheckBoxColor (] 140, 255, 255, 255
CheckBoxSize 15

CheckMarkColor [] Khaki

Fill

Height 3

Highlight SeriesOnTitle True

Highlight Series TitleColor [] ‘ellow
IntensityScales

Layout Horizontal
MouseHighlight Simple

Mouselnteraction True

MoveByMouse True

MoveFrom SeresTitle True

Cffaet

Position Segment BottomRight
Scroll BarVisibility Buoth

Segment Index 0

Series TitleCalor [] White

Series Title Font Segoe Ul, 10pt
Shadow

ShowCheckboxes True

Showlcons True

UnitsColor [] White

UnitsFort Segoe Ul, 9pt
UseSeres TitlesColors False

WaluelLabelColor [] White
WaluelLabelFort Segoe Ul, 9pt

Wisible True

Width 303

Figure 6-87. Extensive LegendBoxXY property tree.

142 LightningChart® .NET User’s Manual, rev. 10.5

6.27.1 Hiding / showing a series from legend box

E — Instr A /Moving avg
M — Instr B USD
M — Instr B EUR

E l Instr A

M T instr A Envelope
v Instr C

Figure 6-88. Legend box shows series titles and icons. Hide a series by deselecting the series checkbox.

6.27.2 Showing series in the legend box

By default, all series are shown in the legend box. If a specific series should not be listed, set

series.ShowinLegendBox = False, for that series.

If multiple legend boxes are used, use series.LegendBoxIndex to select the preferred legend box. Series

can appear only in one legend box. Default index is O for all series, meaning they will all appear in the

same legend box unless stated otherwise.

6.27.3 Selecting in which graph segment to show a legend box

Use Segmentindex to control in which segment to show the legend box. It applies only to segment-

based Position options.

6.27.4 Modifying check boxes

To show or hide the check boxes in the legend box, use ShowCheckBoxes property. CheckBoxColor and
CheckMarkColor can be used to change the appearance of the check box while CheckBoxSize controls

the size of the box in pixels.

_chart.ViewXY.LegendBoxes [0] .ShowCheckboxes
_chart.ViewXY.LegendBoxes [0] .CheckBoxColor

_chart.ViewXY.LegendBoxes[0] .CheckMarkColor
_chart.ViewXY.LegendBoxes[0] .CheckBoxSize =

6.27.5 Hiding icons

To hide the icons, set Showlcons = False.

Colors.Green;
Colors.Blue;

Copyright LightningChart Ltd 2009-2023

143

6.27.6 Modifying intensity series palette scales

To hide the palette scale of an IntensityGrid or -Mesh, set IntensityScales.Visible = False. To resize it, set
ScaleSizeDim1 and ScaleSizeDim2 properties. The border of the scale as well as the position of the title
can also be modified.

M — series title M Heat map

-50 -10 10 25 40 60

M — Series title M Heat map

Figure 6-89. LegendBox.IntensityScales.Visible = false in the bottom picture.

The precision of Legendbox IntensityScale labels format is controlled by LegendBoxValuesFormat
property. Standard or custom .NET numeric format strings should be used.

intensitySeries.LegendBoxValuesFormat = "0.00";

6.27.7 Controlling positions

Legend boxes can be placed automatically or manually. Automatic placement allows them to be aligned
to the left/top/right/bottom side of the graph segments, or on margins. Control the position with
Position property. Position options are: TopCenter, Topleft, TopRight, LeftCenter, RightCenter,
Bottomleft, BottomCenter, BottomRight, Manual.

If the view is divided to several segments, legend boxes can be aligned based to the segment it belongs
to (use Segmentindex to control this). For segment-based controlling there are the following options:
SegmentTopleft, SegmentTopCenter, SegmentTopRight, SegmentBottomLeft, SegmentBottomCenter,
SegmentBottomRight, SegmentLeftMarginCenter, SegmentRightMarginCenter.

Offset property shifts the position by given amount from the position determined by Position property.

// Setting legend box position, offset shifts from RightCenter position
chart.ViewXY.LegendBoxes[0] .Position = LegendBoxPositionXY.RightCenter;
chart.ViewXY.LegendBoxes[0] .Offset = new PointIntXY(-15, -70);

Manual positioning calculates the offset from the top-left corner of the legend box to the view’s top-left
corner. Note that this differs from TopLeft option, which is calculated from the top of the graph area.

Note that when moving or resizing legend box, its Position is set to Manual, and Offset property is
updated to reflect the new position.

144 LightningChart® .NET User’s Manual, rev. 10.5

Automatic legend box alighnment is disabled until setting Position back to an option other than ‘Manual’.
Since Offset is not updated when switching between Position options, legend box may seem to disappear
sometimes (it is located outside the view). Fix this by setting Offset back to 0, 0.

6.27.8 Allocating space for legend boxes between graph segments

When setting ViewXY.AutoSpacelegendBoxes = True, additional space between segments will be

allocated to fit the legend boxes in them. Note that also ViewXY.AxisLayout.SegmentsGap is allocated
between segments.

Car telemetry

E Engine RPM E Speed

-
z.
=
u
-S
2
w

Lever position in manual transmission

25
Distance (km)
Figure 6-90. Position = SegmentBottomRight. AutoSpaceLegendBoxes = False.

Car telemetry

)

=]

=]
b

Speed (kmy/h)
E g
1 1

M~ Engine RPM [— Speed
4000 4

3000 —

2000 —

Engine (RPM)

1000 —
[

E Lever position in manual transmission

t
25
Distance (km)

Figure 6-91. Position = SegmentBottomRight. AutoSpaceLegendBoxes = True.

Copyright LightningChart Ltd 2009-2023 145

6.27.9 Alignment of legend boxes in segment gap

To align legend box vertically near the specified segment, set AlignmentinSegmentGap = Near. To align
it vertically to center of the gap between segments, set AlignmentinSegmentGap = Center.

6.27.10Horizontal alignment of several legend boxes sharing the same margin

AlignmentinVerticalMargin property has Left/Center/Right options. The property controls horizontal
positioning of legend boxes set to the same vertical margin.

Car telemetry
4300 4

4000 —

Engine RPM M Speed

=
&
& ;
L'}
'S
3
w

M Lever position in manual transmission

f f
20 30
Distance (km)

AlignmentInVerticalMargin
controls horizontal positioning

Figure 6-92. AlignmentinVerticalMargin = Left set for both Legend boxes.

146 LightningChart® .NET User’s Manual, rev. 10.5

6.27.11Resizing and moving legend boxes

The legend boxes support resizing and scroll bars. Grab from the edge to resize it.

Concentration (kmol)
M — H20
M — H(+a)

M — OH(-a)
M — ci(-a)

s

Figure 6-93. Scrollbars in a legend box

Note that when moving or resizing legend box, its Position is set to Manual, and Offset property is
updated to reflect the new position (see chapter 6.27.7).

6.27.12Legend box events

Aside from typical Mouse click events, Legend boxes have a couple of specific events.

- CheckBoxStateChanged triggers when the state of a series checkbox has changed from
checked to unchecked or vice versa. The event has IsChecked property to get the current
state of the checkbox, and Series property to check which series was affected.

- SeriesTitleMouseClick, SeriesTitleMouseDown etc. are special events which trigger only
when a series title in the legend box is interacted with. If similar event, for instance
MouseClick, is used for both the legend box and the series titles, the series title event will
take priority. MouseOverOn and MouseOverOff also have Series property to check which
series was affected.

Note that the above events only work when MoveFromSeriesTitle property has been disabled.

// Using Legend box events.
_chart.ViewXY.LegendBoxes [0] .MoveFromSeriesTitle = false;
_chart.ViewXY.LegendBoxes[0] .CheckBoxStateChanged +=

Legend CheckBoxStateChanged;

private void LegendBox CheckBoxStateChanged(object sender,
Arction.Wpf.Charting.Views.CheckBoxStateChangedEventArgs e)
{
if (e.Series is PointLineSeries series) // Get the affected series.
{
series.LineStyle.Color = Colors.Yellow;

}

Copyright LightningChart Ltd 2009-2023 147

6.28 Zooming and panning

FoomPanOptions

AltEnabled

w AspectRatioOptions

AspectRatio

Manual Aspect RatioWH
HAizindex

Y AigIndex

v AutoYFit

Enabled
MarginPercents
TargetAll'f Aues
Thorough
Updatelnterval
AuxigWheel Action
CirEnabled
DevicePrimanyButton Action
DeviceSecandanyButton Action
Device TertianyButton Action
lgnoreerosinLogFit
MultiTouch PanEnabled
Multi Touch Sensitivity
Mutti Touch Zoom Direction
MultiTouchZoomEnabled
PanDirection
PanThreshald
Rectangle ZoomAbowtOrigin
Rectangle ZoomDirection
Rectangle Zooming Threshold
X
Y

Rectangle ZoomLimitInsideGraph

RectangleZoomMaode
RectangleZoom Units Link ¥ Axes
Right ToLeft ZoomAction
Shift Enabled

WiewFit Y Margin Pixels
WheelZooming
ZoomFactor

ZoomOut RectFil
ZoomOutRectLine
ZoomRectFill
ZoomRectLine

True

GGM%

Falze

False
True
100
Fan
True
Zoom
Fan
Fan
Falze
True

Rails
True
Bath

Falze
Both

4
4

Falze

Horizontal AndVertical
Falze

ZoomTaFit

True

1]

Horizontal AndVertical
2

Figure 6-89. ZoomPanOptions properties and sub-properties.

can be also performed with mouse wheel.

Use ZoomPanOptions to control the zooming and panning settings.

Zooming and panning are configurable and can be performed by left or right mouse button. Zooming

148

LightningChart® .NET User’s Manual, rev. 10.5

6.28.1 Zooming with touch screen

Set two fingers on the chart and pinch the fingers closer to zoom out, or away to zoom in.

The chart tries to detect if trying to do a horizontal or vertical zooming, or both at same time. This feature
is called ‘zooming with rails’, which can be controlled by MultiTouchZoomDirection
(Free/XAxis/YAxis/Rails).

By pinching/spreading fingers above an X or Y axis or their labels, the zooming applies to that specific
axis only.

Zooming with touch can be disabled by setting MultiTouchZoomingEnabled = false.

6.28.2 Panning with touch screen

Set two fingers on the screen and slide them at same pace to pan the view.

Some systems support panning with inertia, so it is possible to “throw” the fingers off the screen, and
the view keeps panning and finally slows down until stopped.

By setting a finger above an X or Y axis or labels of it, and sliding the finger, the panning applies to that
specific axis only.

6.28.3 Left mouse button action

Set DevicePrimaryButtonAction to Zoom, to enable zooming with left mouse button. Set it to Pan to
enable panning. To disable zoom and pan from left mouse button, set it to None.

6.28.4 Right mouse button action

Set DeviceSecondaryButtonAction to Zoom, to enable zooming with right mouse button. Set it to Pan to
enable panning. To disable zoom and pan from right mouse button, set it to None.

Copyright LightningChart Ltd 2009-2023 149

6.28.5 RightToLeftZoomAction

RightToLeftZoomAction applies when DevicePrimaryButtonAction or DeviceSecondaryButtonAction is
set to Zoom. RightToleftZoomAction specifies what happens when mouse zooming is made from right
to left (mouse X button down-coordinate > button up-coordinate). The following selections are available:

ZoomToFit: Fits all Y axes and X axes so that all series data belonging to them is shown. By using
ViewFitYMarginPixels with greater value than 0, the axes are scaled so that given space in pixels is
reserved empty of data, in both Y axis minimum and maximum end.

RectangleZoomin: Zooms in with rectangle, as in zooming from left to right.

ZoomOut: Zooms out, by using ZoomFactor.

RevertAxisRanges: Sets axis values to specific values, which are restored after the view has been zoomed

or axis ranges have been otherwise modified. In each axis, there’s RangeRevertEnabled property, which
controls if the axis range should be reverted. If it's enabled, RangeRevertMinimum and
RangeRevertMaximum properties are applied to the axis when dragging mouse from right to left, and
the mouse button is released.

PopFromZoomStack: Sets the same axis ranges that were used when zooming in last time, in other

words, goes back to the previous zoom level.

6.28.6 Zooming with mouse button

6.28.6.1 Zoom in/out by clicking

Use ZoomFactor property to control the how much closer/farther the zoom is applied. To apply negative
zoom effect, set value as inversed value (1/factor). The zoom is applied using mouse cursor position as a
zoom center point.

X dimensional zoom:

With chart control focused, press Shift key down. Zoom X cursor appears. Click configured mouse button
to zoom in, and the other button to zoom out.

Y dimensional zoom:

With chart control focused, press Ctrl key down. Zoom Y cursor appears. Click configured mouse button
to zoom in, and the other button to zoom out. When using a stacked YAxisLayout, zooming applies to all
graph segments (Y axes). By pressing Ctrl and Alt keys down, the Y dimensional zoom is applied only to
the graph segment the mouse was clicked over.

Press both Shift and Ctrl(+Alt) keys down simultaneously, for applying zoom to both X and Y dimensions.

150 LightningChart® .NET User’s Manual, rev. 10.5

6.28.6.2 Zooming with mouse cursor options

RectangleZoomMode -property allows configuring in which position the zoom rectangle is drawn and
what how different directions should be handled. By default, the property is set to
HorizontalAndVertical, meaning that the area drawn by dragging mouse from left to right is to be
zoomed. Respectively zoom-out rectangle is drawn when mouse is dragged from right to left. If
RectangleZoomMode is set to Horizontal or Vertical, only that direction will be zoomed.

Both X-axes and Y-axes have ZoomOrigin -property which can be used to set the position around which
the zooming rectangle will be centered. If RectangleZoomMode is set to use AboutYAxisZoomOrigin,
AboutYAxisZoomOrigin or AboutXYZoomOrigin, the position set via ZoomOrigin settings will always be
used as a center point of the zoom rectangle.

LightningChart® .NET LightningChart® .NET

\ i MouseDown:[[6.5, 8.

o e
= -
= =
2 2
4 b3
© ©
> >

. Origin: [10, 50

Mouselhowh: [11.5, 32.6]

T
10
X axis title

10
X axis title

Figure 6-90. Standards settings: ZoomPanOptions.RectangleZoomMode = HorizontalAndVertical. ZoomOrigin has no effect
on the zooming rectangle.

LightningChart® .NET LightningChart® .NET

MouseDown:

N\

seRown: [6.0, 53.2]

Y axis title
Y axis title

Origin: [10} 501

10
X axis title

5.0 ity
X axis title

Figure 6-91. ZoomPanOptions.RectangleZoomMode = Horizontal. Only X-axis is zoomed, while Y-axis remain unchanged.

Copyright LightningChart Ltd 2009-2023 151

LightningChart® .NET LightningChart® .NET

MouseDown: [3.6, 87.4]

~
@

~
o

2
=
=
@
=
@
>

Y axis title

Onigin: [10 50]
MousepPolwn: [12.2, 70.3]

LightningChart® .NET

Origin: [10, 50]

Y axis title
Y axis title

: [11.6, 41.01

10 2 10
X axis title X axis title

Figure 6-93. ZoomPanOptions.RectangleZoomMode = AboutXYZoomOrigin. Mouse down position ignored. Zoom rectangle
is drawn relatively to ZoomOrigin (of both Axes) and mouse current position.

LightningChart® .NET

Y axis title

12
X axis title

Figure 6-94. ZoomPanOptions.RectangleZoomMode = AboutXAxisZoomOrigin. Zoom rectangle is centered around
XAxis.ValueOrigin. Vertical size of zoom rectangle defined by mouse-down and mouse-up position.

152 LightningChart® .NET User’s Manual, rev. 10.5

LightningChart® .NET

@
B
=
.2
=
@
e

QOrigin: [14 50]

10
X axis title

Figure 6-95. ZoomPanOptions.RectangleZoomMode = AboutYAxisZoomOrigin. Zoom rectangle is centered around
YAxis.ValueOrigin. Horizontal size of zoom rectangle defined by mouse-down and mouse-up position.

6.28.6.3 Zoom in with rectangle

With configured mouse button, drag a rectangle around the area to be zoomed, from upper left corner
to bottom right corner. Both X and Y dimensions effect. The dimensions are selected by
RectangleZoomDirection property. The zoom rectangle border and fill style can be modified by using
ZoomRectFill and ZoomRectLine properties.

6.28.6.4 Configuring zoom out rectangle

When RightToleftZoomAction is set to ZoomToFit, ZoomOut, RevertAxisRanges or PopFromZoomStack,
the zoom out rectangle appears when zooming. Configure its fill by ZoomOutRecFill and line style by
ZoomOutRectlLine.

6.28.7 Zooming with mouse wheel

When WheelZooming is enabled, zoom in by scrolling the mouse wheel upwards and zoom out by
scrolling it downwards. The zoom center is the position of mouse cursor. Use ZoomFactor to adjust the
mouse wheel zoom strength. By keeping Shift key pressed, the zoom is applied only to X dimension. By
keeping Ctrl key pressed, the zoom applies only for Y dimension. Note that zooming is not available when
ScrollMode is set to Sweeping.

Copyright LightningChart Ltd 2009-2023 153

6.28.8 Zooming and panning with device wheel over axis

Use AxisWheelAction to configure the outcome of device wheel actions applied over an axis.
None: The wheel does nothing

Zoom: Zoom only the axis the pointer is currently over

Pan: Pan only the axis the pointer is currently over

ZoomAll: Zooms all X axes if pointer is over an X axis, or all Y axes if over a Y axis. Applies to other axes
only when YAxisLayout = Layered.

PanAll: Pans all X axes if pointer is over an X axis, or all Y axes if over a Y axis. Applies to other axes only
when YAxisLayout = Layered.

6.28.9 Panning with mouse button

Configure DevicePrimaryButtonAction or DeviceSecondaryButtonAction to Pan for panning to work.
Drag the graph area with the configured mouse button pressed down. To stop panning, release the
button. Panning scrolls both X and Y axes by dragged amount, if PanDirection is Both. By setting
PanDirection Vertical, it only targets Y axes. Respectively, PanDirection Horizontal targets only X axes.
Use PanThreshold to give some tolerance in pixels before the panning starts to affect. It's very handy
when using ContextMenuStrip control assigned for the chart control, preventing it to open every time
the panning stops.

6.28.10Enabling/disabling Ctrl, Shift and Alt

Zoom operations support these modifier keys, and by default, they are enabled. To disable them, set
AltEnabled = False, CtrlEnabled = False or ShiftEnabled = False.

6.28.11Zoom in/out with code

Use ZoomByFactor(...) method to zoom with a center point and a zoom factor. Use Zoom(...) method to
zoom with rectangle. ZoomToFit() method fits invokes “Zoom to fit” operation (fits all Y axes and X axis
so that all series data is shown).

154 LightningChart® .NET User’s Manual, rev. 10.5

6.28.12Zooming an axis by code

Set values to X or Y axis Minimum and Maximum properties. Use SetRange(...) to set them both at same
time.

6.28.13Rectangle zooming about a configurable origin

By enabling RectangleZoomAboutOrigin, the rectangle zooming in/out applies symmetrically using
ZoomOirigin as a center point, set in X axis and Y axis values.

-
sy
\ 3 XAXis.Zpom®rigi
YAXjs.Zoomd

Figure 6-92. ZoomPanOptions.RectangleZoomAboutOrigin enabled. ViewXY.XAxes[0].ZoomOrigin = 10 and
ViewXY.YAxes[0].ZoomOrigin = 50.

6.28.14Linking Y axes zoom with same units

By enabling RectangleZoomLinkYAxes, all the Y axes having the same Units.Text string get the same Y
axis range as the axis that was rectangle zoomed.

Copyright LightningChart Ltd 2009-2023 155

;?-Linked

-100

AP RALARALAN /\/\

R e

Figure 6-93. Stacked view with 5 Y axes. When rectangle zoom is applied over a graph segment, the Y axes of it get zoomed,
and the new Y axis range is copied to all Y axes having the same Units.Text.

6.28.15Automatic Y fit

Demo examples: Signal reader; Audio L+R, area, spectrograms; Waveform, persistent spectrum

Use AutoYFit property to control the automatic Y axis adjustment. Automatic Y fit can be used to adjust
the Y axis ranges to show all the data in the chart in visible X axis range. It is intended especially for real-
time monitoring purposes. The fit is applied in time intervals, use Updatelnterval to set the interval in
milliseconds. MarginPercents can be used to define if any empty space should be left between the series
and the graph borders. By enabling Through, the fitting analysis is made for all data, but may cause some
overhead in performance critical systems. By disabling it, only a small piece of latest data is used for
fitting routine and may cause improper behavior in certain applications.

AutoYFit can be enabled via ZoomPaddingOptions:
_chart.ViewXY.ZoomPanOptions.AutoYFit.Enabled = true;

Which Y-axes are automatically fit should be also defined. With TargetAllYAxes, automatic Y fit can be
applied to every Y-axis simultaneously. Alternatively, AllowAutoYFit can be enabled for each Y-axis
separately.

// Enable AutoYFit for all Y axis.
_chart.ViewXY.ZoomPanOptions.AutoYFit.TargetAllYAxes = true;

// Enable AutoYFit only for this Y axis.
_chart.ViewXY.YAxes[@].AllowAutoYFit = true;

Note! AxisY class also has Fit() methods for fitting in Y dimension.

156 LightningChart® .NET User’s Manual, rev. 10.5

6.28.16Aspect ratio

AspectRatioOptions.AspectRatio controls the X/Y (or longitude / latitude in maps) ratio.

By default, it is set Off allowing X and Y axis ranges be set individually. By setting the aspect ratio to
Manual, the ManualAspectRatioWH property can be used to set the preferred ratio. Changing
ManualAspectRatioWH adjusts the x axis Minimum and Maximum properties to get the desired aspect
ratio. Zooming operations will follow aspect ratio setting.

ManualAspectRatioWH is calculated as follows:

ManualAspectRatioWH = View width in pixels / View height in pixels * X axis range / Y axis range
For example:

ManualAspectRatioWH = 1530 / 902 * (20 - 0) / (100 - 0)

Width and height of the view depends on the window size. Axis ranges are simply maximum — minimum.

Figure 6-94. The view area of the chart. Its size in pixels is used to calculate the ManualAspectRatioWH.

When AspectRatio is other than Off, axis scaling nibs are not available.

For maps (see 6.31), AspectRatio = AutolLatitude is a very useful option. AutoLatitude changes the
aspect ratio dynamically when viewing the map in different locations. The aspect ratio is determined
by the center point of the view.

6.28.17Excluding specific X or Y axes from zooming and panning operations

e To exclude specific X or Y axes from Zooming operations, set
axis.ZoomingEnabled = False

Copyright LightningChart Ltd 2009-2023 157

e To exclude specific X or Y axes from Panning operations, set
axis.PanningEnabled = False

6.29 DataBreaking by NaN or other value

Demo examples: Data breaking in series

Enabled True
Value MNaN

Figure 6-95. DataBreaking options in series that support it.

These series types support data breaking:

e PointlLineSeries

o FreeformPointLineSeries
e SampleDataSeries

e AreaSeries

e HighLowSeries

e PointLineSeries3D

LightningChart skips rendering of the data points that match with specified breaking Value. All other
values it renders normally.

LightningChartUltimate

PV AW

i
2

Figure 6-96. DataBreaking in use for PointLineSeries, SampleDataSeries, AreaSeries and HighLowSeries.

158 LightningChart® .NET User’s Manual, rev. 10.5

Note! When DataBreaking.Enabled = True, it will cause significant extra overhead, and is not
recommended for solutions needing very high real-time data rates. Consider using ClipAreas, see
chapter 6.30.

For example, using NaN to break PointLineSeries data:

1
=
B
225
x
©
>

N
(=}

[
w

Figure 6-97. Using NaN to break PointLineSeries.

Code:

int pointCount = 101;
double[] xValues = new double[pointCount];
double[] yValues = new double[pointCount];

for (int point = 0; point < pointCount; point++)
{
xValues[point] = (double)point * interval;
yValues [point] 30.0 + 5.0 * Math.Sin((double)point / 20.0);

}

//Add some NaN values in Y array to mark break points
yValues[40] = double.NaN;
yValues[70] = double.NaN;
yValues[71] double.NaN;
yValues[72] double.NaN;
yValues[73] double.NaN;
yValues[90] double.NaN;
yValues[91] double.NaN;

//Add new series with DataBreaking Enabled
PointLineSeries pls = new PointLineSeries(_chart.ViewXY,
_chart.ViewXY.XAxes[0], chart.ViewXY.YAxes[0]);

pls.DataBreaking.Enabled = true;

// set data gap defining value (default = NaN)
pls.DataBreaking.Value = double.NaN;

Copyright LightningChart Ltd 2009-2023 159

SeriesPoint[] points = new SeriesPoint [pointCount];
for (int point = 0; point < pointCount; point++)

{

= xValues|[point];

= yValues|[point];

points([point].

X
points([point].Y

}

//Assign the data for the point line series
pls.Points = points;

//Add the created point line series into PointLineSeries list
_chart.ViewXY.PointLineSeries.Add (pls);

6.30 ClipAreas

Demo examples: Clip areas

Like DataBreaking (see 6.29), ClipAreas can be used to prevent part of the series data from
rendering. They can be used to filter out bad data ranges, out-of-range data by Y value, etc.

ViewXY's series have SetClipAreas method for setting or updating the clipping areas. It accepts an
array of ClipArea structures. The ClipAreas array can be changed frequently, and performance stays
good up to thousands of ClipAreas.

The ClipArea applies for the series that it has been assigned to. Note that this is a rendering-stage
clipping and mouse operations will respond to series when placed over the ClipArea if there's actual

data under it.

-V

Figure 6-98. ClipAreas defined for 3 series. For PointLineSeries, AreaSeries, and IntensityGridSeries. On the left, the
ClipAreas are not used. On the right, ClipAreas are enabled. For yellow PointLineSeries, X dimensional clipping areas
have been defined to mask off low-amplitude data. For red AreaSeries, Y-dimensional ClipArea cuts too high-amplitude
data from the top. For IntensityGridSeries, X- and Y-dimensional ClipAreas are used to prevent the series from rendering
in specific areas.

Using ClipAreas is the performance-wise preferred way to break a line to several data segments
instead of using DataBreaking feature, or spawning hundreds of separate series during real time
monitoring.

160

LightningChart® .NET User’s Manual, rev. 10.5

6.31 Maps

Use Maps property and its sub-properties to show geographic maps. LightningChart maps come in two
different categories: vector maps and tile maps. The maps are shown in so called equirectangular

projection.

Kirnibati

lcanfSamoa
Ritcainniislands]

I,Ung-ltude

Figure 6-99. Equirectangular projection of the world. X range is from -180 to 180 degrees (180W to 180E), Y range from -90 to
90 degrees (90S to 90N). Polar areas get greatly stretched in this projection.

This projection allows using LightningChart’s series types and other objects that are practically all
bound to X and Y axes, same time with the maps.

Copyright LightningChart Ltd 2009-2023 161

6.32 Vector maps

Demo examples: World map; Map route; Map with environmental data; Wind data

The geographic vector data is stored in LightningChart map files, with .md extension. LightningChart is
delivered with set of map files.

The X-axis is used for Longitude, and the Y-axis for latitude. See chapter 6.2.3 for showing map coordinate
axes. The map coordinates are decimal degrees, with latitude origin at equator and longitude origin at

Greenwich, U.K.

Backgrounds
CityO pionz
Dezcrnption
FileM arme
Lakelptionz
Landd ptions
Lavers
t ouzeHighlight
b ouzelnteraction

HEH

ki ouzelverbdapltemlayer

Mamesz
Optirization

Other0phons
Dverlaplabels
Fath

Renderlntenzitys enezB eforelayerl ndex

Riverdphionz
Foaddphions
SimpleHighlightCalar
TileCacheFolder
TileLayers

Type

izl ndes

izl ndes

®H &H

Figure 6-100. Maps’ properties and sub-properties. The whole tree is for vector maps, except TileLayers collection and
TileCacheFolder, which is for tile maps.

6.32.1 Selecting active map

Set the directory name to the Path property, where the map files exist. The active map can be
selected with Type property, for maps delivered with LightningChart. To use an own map file, set the
FileName property.

If no maps are wanted, set Type to Off.

[Collection]

tap of waorld in mid resalubion.
WorldMid

b apLaver]] Aray
Simple

True

1

[Callection]
Hone

Falze
A A AMaps
-1

[] 100, 0, 255, 0
c-\dtempimap_cache
[Collection]
WorldMid

1]

1]

162

LightningChart® .NET User’s Manual, rev. 10.5

6.32.2

uli3

Australiabid
CanadallSAStateszhiid
Evropelow

Europetdid

EvropeHigh

Other

USaLakesRiversMid
J5aLakesRiversHigh
USaStatesl akesRiversiid
|J5AStatesl akesRiversHigh
U5aStatesl akesRiversFoadsMid
i orldL o

W orldhdid

wharldHigh
wiorldLakesRiversLow
wéorldL akezRivershdid
Morthémericalow

M arthdmernicakdid
HorthdmericaHigh

Figure 6-101. Map Type options. The maps delivered with LightningChart are shown. The type name postfix tells a rough

detail level of the map.

In general, the maps of LightningChart are made in very high detail level. For real-time monitoring

solutions it is important to select a map giving proper detail and performance level.

Aspect ratio

ViewXY.ZoomPanOptions.AspectRatioOptions.AspectRatio controls the X/Y (or longitude / latitude)

ratio.

Set it to Off to enable X and Y axis range setting individually allowing stretching the map.
Autolatitude changes the aspect ratio dynamically when viewing the map in different locations. The
aspect ratio is determined by the center point of the view. By setting the aspect ratio to Manual, use
the ManualAspectRatioWH property to set the preferred ratio. See chapter 6.22.16 for detailed

explanation of how aspect ratio is calculated.

Copyright LightningChart Ltd 2009-2023

163

6.32.3 Layers and their appearance settings

Each map file can contain several layers. For example, layers for land regions, lakes, rivers, roads and
cities. The layers and their data are accessible from Layers array property.

B Layers hd apLayer[] Array
Arction LightringChartU ltimated Maps. Poir
Colar
Ibems City[] Aurray
M ame Cities
Priority 0
Type City
Visible True
[1] Arction. LightringChartUltimate. b aps. Feg
B [2] Arction. LightringChartUltimate. b aps. Feg
BorderDiramSiyle Options
Iterns Fregion[] Aray
M arne Lakes
Fricrity 2
FegionDrawStyle Options
Tvpe Lake
Wizible True
= [3] Arction. LightningChartUltirmate. b apz. Line
Autaddjustlinewidth True
Iterns Line[] Amay
LineDrawStyle Options
LinetwfidthCoeff 1
M arne Rivers2
Fricrity 3
Tvpe Fiwer
Wizible True

Figure 6-102. Map layer details opened in Properties editor.

Each layer has a specific type. The layer appearance options can be changed with corresponding
options property. Use LandOptions for modifying the appearance of land regions, LakeOptions for
lakes, RiverOptions for rivers, RoadOptions for roads, CityOptions for cities, and OtherOptions for
unspecified layer types.

164 LightningChart® .NET User’s Manual, rev. 10.5

Map: WorldMid

B LandOphons Arction LightningChartUltimate b 724
AntialiazFill False
= Fill Arction_LightningChartUltimate_F
Bitmap Arction_LightningChartUltimate_H
Calar [OldLace
GradientColar [] Moccasin
GradientDirection 270
GradientFil Linear
Style ColorOnly
Fillvisible True Nishey Novnarad
B LabelStyle Arction_LightningChartUltimate_k L
Andle i} L
Color Il Black 7 Polandl
Fant Microgoft Sans Serif; 12pt: style = % A
Shadow Arction LightningChartUltimate. T '?B,e"fsh:fi‘fvaki'a o
Wisible True Tl | Mo
B LineStyle Arction.LightningChartUltimate_L T
Antitliazing Mormal
Calor B DimGray
Pattern Solid
\IT';tctleP:nScale : Turkey
it
Lineisible Tiue N e
Nonher_mi()'p‘vras

W 0 3 108 15E 20 25 0E BE 40E 45E S0E

Figure 6-103. Default LandOptions, and corresponding view from Europe.

2 LandDptions Arction.LightningChartUltimate. M -~ Map: WorldMid
AntiglizzFil False
= Fill Arction.LightningChartUlItimate_Fi
Bitmap Arction.LightningChartUItimate_B
Calor [SandyBrown
GradientColar Il Black
GradientDirection 270
GradientFill Radial
Style ColorOnly
Fillvisible True
= LabelStyle Arction_LightningChartUlItimate_ M
Angle 45
Color Il Black
Fant Aurial Black: 12pt; style=Bold. Ital
Shadow Arction_ LightningChartUltimate. T
Vigible True
= LineStyle Arction_LightningChartUItimate_Li
Antidliazing Mormal
Caolor Il Black
Pattern Solid
PatternScale 1
Yidth 3
Lingtigible True

Figure 6-104. Modified LandOptions.

5.25.3.1 Setting individual fill and border style for each layer item

Each map element fill or border appearance can be set individually. Change BorderDrawStyle and
RegionDrawsStyle properties to Individual. Then, access the Items collection, and navigate to preferred
item and edit the BorderLineStyle and Fill properties. The Items collection can be navigated
programmatically by Name property, here “Germany”.

Copyright LightningChart Ltd 2009-2023 165

B Layers M aplaper(] Aray [54] Arction. LightringChartU mate M aps. R

[0 Arction LightningChartUltimate. M aps. Pc [55] Arction LightningChartU ltimate Maps. R
B [1] Arction. LighthingChartU ltimate. Maps. Re [5E] Arction LightningChartUlbimate M aps. R
BorderDrawstyle Individual [=] B [57] Arction LightningChart ltimate Maps. R
Itemms Region[] Aray B BorderLingStyle Arction.LightningChartUItimate_ L
Mame Countries Artidliazing Mone
Friority 1 Color I Red
RegionDrawStyle Individual Pattern Solid
Type Land PatternScale 1
Wigible True Yfidth 3
Center Arction. LightningChartU timate. PointFlc
= Fill Arction_LightningChartUltimate_F
Bitmap Arction_LightningChartUltimate_B
Color 1 White

GradientColor [l DarkViolet
GradientDirec: 270

GradientFill Linear

Style ColorOnly

Germany

Figure 6-105. Setting layer border line and region fill styles to Invidual and editing region in Items collection.

Figure 6-106. Germany region drawn with individual fill and border.

6.32.4 Mouse interactivity

Enable AllowUserInteraction for all kind of interoperation with map regions and objects. Regions
(land, lakes) and vector layers (rivers, roads) can be pointed with mouse. Once the mouse is over an
object, it gets highlighted with SimpleHighlightColor, if Highlight is set to Simple. When Highlight is
set to Blink, the object will blink in light and dark colors. By setting Highlight to None, the object is

166 LightningChart® .NET User’s Manual, rev. 10.5

not highlighted, but it still can be clicked and for example used to invoke
Maps.ButtonDownOnMapltem event.

Map objects may have associated data included, like population or other statistical data. Use
UserinteractiveDeviceOverOnMapltem/UserInteractiveDeviceOverOffMapitem
/ButtonDownOnMapitem event handler to access the data. The data for a map item can be retrieved
with GetInfo method, giving a dictionary of keys and values.

Here’s an example of how to show all data in a list box. The item name is displayed in a different text
box.

private void ButtonDownOnMap (ButtonDownOnMapItemEventArgs args)

{
MapItem mapltem = args.Mapltem;

textBoxCountryName.Text =
m_chart.ViewXY.Maps.Layers[args.Layer] .Name

+ ": " + mapltem.Name;
listBoxItemValues.Items.Clear();
if (mapItem.GetInfo() != null)

{
Dictionary<string, string> dict = mapIltem.GetInfol();
Dictionary<string, string>.KeyCollection keys = dict.Keys;
foreach (String key in keys)
{
String strValue;
if (dict.TryGetValue (key, out strValue))

{
listBoxItemValues.Items.Add(key + ": " + strValue);

}

6.32.5 Background photos

Adding a MapBackground object in Maps.Backgrounds property allows displaying bitmap images as
the backgrounds of the maps. Satellite images or other raster images are available from several GIS
data providers. The image can be set to Image property, and its latitude and longitude range can be
set with LatitudeMin, LatitudeMax, LongitudeMin and LongitudeMax properties. The image is not
displayed outside the set ranges.

To show the background through the map layers, it may be necessary to adjust the fill settings for
each layer. Use transparent colors or colors with low alpha level.

Copyright LightningChart Ltd 2009-2023 167

Latitude

Map: WorldMid

100N

90N 3
ol el e e N e
Lk = Svalbard and Jan"Mayen Islands ™~ s -
] <. = Greenland =~ 4 == pojE ———
70N = = | 2% . | et J
g \g‘/ﬂf'
E === PR e | - Egr,oe,lslan‘ A "
S5 ok X ; 5 Uniteddii 5
S >‘dnd Miquelon b‘”
40N Un , ; .
KR s e i = —— ‘—.—*2» =
0 - : an
s B @ ‘ali\Niger\ i
2 v ail
. Cape V. P botti @ dia Guam
3 Giri Co alia Sriflfanka Brudei Sralau Marshallllslands)
0 b auru
ife Seychelles
105 =
\merican Samoa ~ 10>
205 S i He
| Cookldbmds Tl = SeBg [auttu
305 - tho.
405 T I
| {]
505 4 | - Fren: hern and Antarctic Lands 1
| [|
605 4 : |
705 3 S o T o o g~
5 Antarctica
905 3
T um T T T T T T T T T T T T T T T T r—
180w 180w 40w 120w 100w 0w 60w 40w 0 206 40E B0E S0E 100E 1206 1408 160E 180E
Longitude

Figure 6-107. Map of the world. LandOptions.FillVisible is set to false, and one background image is set to latitude range
of -90...90 and longitude range of -180...180. The map region borders and cities are shown.

6.32.6 Combining other series with maps

Geographical maps can be combined with any ViewXY series type. The maps are drawn in the
background and the series over them.

1000%

1500E
Longitude

g
g

Uyt

Figure 6-108. Map of Europe, with a couple of FreeformPointLine series as routes. Flag markers are added to them as
mouse-interactive waypoints.

168

LightningChart® .NET User’s Manual, rev. 10.5

World elevation

[90°00°00"N
70°00°00"N

50°00°00"N

40°00°00"N

0°00°00"
10°00'00"S
20°0000"S

YA ‘-»' M Elevation
\ 9000

T T T T T
150°0'0"W 100°0'0"W 100°0'0"E 150°0'0"E

Figure 6-109. Map of the world, with IntensityGrid series presenting the elevation.

Precipitation monitoring

700N
68,0N
66,0N
640N
62,0N
60,0N

58,0N

56,0M . (3 42@
| -
S4ON k g Belarus
ki ,ON @ Poland
- == ermani®™ o
Czech ic

¥

420N
400N
380N
360N

S =5 T T 1 1 1 1

25°00"W 20°0'0"W 15°0'0"W 10°0°0"W 5°0'0"W 0°0'0" 1?“0'0"E 20°00"E 25°0'0"E 30°0'0°E 35°0'0°E 40°0'0"E 43°0'0"E
Longitude

Figure 6-110. Weather radar data visualization with IntensityGrid series over the map of Europe.

Copyright LightningChart Ltd 2009-2023 169

6.32.7

Importing maps from ESRI shape file data

Import feature makes a LightningChart map file (.md) from .shp files. ESRI shapefile (*.shp) is a widely
used map file format supporting vector and polygon data.

Map wizard can be used to convert shapefile data to LightningChart (LC) map data format. LC format
supports layering, so multiple shapefiles can be merged into a single file. Map file structures and
objects are pre-processed for maximum run-time performance.

Tip: LightningChart® .NET’s demo application has an example of map importing. Run import wizard
from there to make custom LC map files through import.

Conversion is done in minimum of three steps:

1. Selecting files and setting up layers based on the files in the Shapefile Selection Dialog.
2. Determining file text encoding.
3. Selecting items included in the resulting map file.

Note that steps 2 and 3 are repeated for each source shp file. Shapefile does not tell which encoding
it uses, so it must be selected by the user.

After the steps, the conversion begins. If the maps are imported from a custom application, the
developer is encouraged to setup an event handler, because conversion might take a very long time,
so that user can be informed about the conversion progress.

Also, if user selects base layer, there might be a considerable delay between the steps, which is due
to prefiltering data based on the layer.

6.32.7.1 Programming interface for importing shp data
Conversion is run on a thread that is initialized from Maps.MapConverter class using following
method:
public bool SelectFilesAndConvert ()
For monitoring conversion progress there is an event handler delegate:
public delegate void ConversionStateChangedHandler (ConversionProgress
progress, int 1i);
Initializing it:
MapConverter mapConverter = new MapConverter();
mapConverter.ConversionStateChanged += new
MapConverter.ConversionStateChangedHandler (mapConverter ConversionStateCha
nged) ;

170 LightningChart® .NET User’s Manual, rev. 10.5

6.32.7.2 Dialogs

There are usually three dialogs involved in the conversion process. For selecting a filter, there is a
distinct dialog.

6.32.7.2.1 Shapefile Selection Dialog

After SelectFilesAndConvert () function is called, file selection dialog opens. In this dialog
user selects the source files and sets up the layering. User can also save the map configuration
by selecting proper file at the dialog.

Select files included in map E'@

File list {in draw order, where t Layer name st) Layer type Base layer

Remove
Edit name...

Description
Map of

Corfiguration file name

[:] [Save config

Figure 6-111. Source shape file selection dialog.

File list

Contains list of files in the order in which they are drawn. File data at bottom is drawn last. Order
of files can be chaged from the up/down buttons on the left of list. Select file and click up/down
to move file.

Layer name
Name of the layer. E.g. “Countries”.

Layer type

Type of layer (specifies which options are used to render layer)
e City: layer items are of shapefile type POINT
e Lake: layer items are of shapefile type POLYGON

Copyright LightningChart Ltd 2009-2023 171

e Land: layer items are of shapefile type POLYGON
e River: layer items are of shapefile type POLYLINE
e Road: layer items are of shapefile type POLYLINE
e Other: layer items are of shapefile type POLYGON or POLYLINE

Base layer

Used to filter upper layer item selection, when user wants a map which contains only
single/some countries and there is only global map available. E.g. if layer contains countries,
only items over the selected countries/country will be included in the resulting map. There is a
small offset applied to POINT type, so that if point is near enough of border it’s included even if
it doesn’t overlap with base layer. If all data from the selected shapefiles are included in the
resulting map, don’t select base layer as it slows down item selection considerably, because all
items are checked if they overlap base layer, which is a very time consuming process.

Description
Free text which is shown in the map properties.

Configuration file name
XML configuration file name. Used for importing/replacing a layer. Note! Use single file when
creating map configuration as import. Replace methods can take only one shp input file.

Save config
Check this if wanting to save map configuration as xml file for later use. Selecting configuration
file automatically sets this checked.

Add button
Click to select shapefile to be added to list.

Remove button
Removes selected file from list.

Edit name button
Click to open “Layer name editor”. Set layer name.

OK button
Click to advance to next stage (item selection).

6.32.7.2.2 Select Record Encoding and Invalid Name Fields

This dialog is used to select file text encoding and fields which have invalid or general name.
Shape file encoding may vary and there is no information about the encoding in the file, so user
must select valid encoding. The item name may be like “UNK” for multiple items. In this dialog

172

LightningChart® .NET User’s Manual, rev. 10.5

the user can select which item name is emptied. Note that the items are still included in the
resulting file, if they are selected in the next phase.

Select Record Encoding and Invalid Mame Fields EI@
File name C:\Users'tkoisti\Downloads'50m-admin-0-countries 50m_admin_0_countries.shp
Layer Countries
Name field MName encoding
(e S| C—
Record name list / select records with invalid name
Anuba -
Afghanistan
Angola
Anguilla
Albania o

Figure 6-112. ‘Record encoding’ and ‘Invalid name’ fields selection dialog.

File name
Shape file name for which the encoding applies.

Layer
Layer name.

Name field
Iltem name field in the shape file. After selecting a different field, the list is updated accordingly.

Name encoding
Item name encoding (try different values if the name does not seem to be right). After selecting
different encoding, the list is updated accordingly.

Record name list / select records with invalid name
List of items for the field selected in the ”Name” field.

OK
Confirm encoding selection (and possible invalid name).

6.32.7.2.3 Layer data selection dialog

This dialog is used to select items included in the resulting map file from the shape file. The layer
name is concatenated in the title. The dialog is adaptive, so that for certain layers there are some
fields which could be selected. E.g. for River/Road type layer there will be a Line width selection,
which could be set to line width field (if applicable). Note that the data may not contain all the
fields asked in the dialog. The Name field is mandatory for all items.

Copyright LightningChart Ltd 2009-2023 173

Select data for layer: Countries EI@

Fle name: C:\Users'tkoisti®Downloads50m-admin-0-<countries’50m_admin_0_counties shp Layer name: Countries

Name field
NAME -
Population field
PECPLE -
Select stored items Select stored fields per item
Togdle all Fitter [Inverted i ?::Si?;: ;
[] Amenia o SOVEREIGNT = Canada’ [C] SOVEREIGNT
[¥] American Samoa SOVEREIGNT = "United States’ [] SOVISO
[C] Antarctica [C] S0V_A3
[] Ashmore and Cartier lsian [C] LEVEL
[T French Southem and Ant [C] TYPE
[Antigua and Barbuda [C] NAME
(7] Australia - [C] SCRTNAME -

Select area data items and fields. ltems are polygons in the shp file and fields are shp records related to the field. Fields are stored to the file with
the related area. Country field is a cross reference field to point data {use if adding point data [e g. cities]). Parent country field contains country field

Figure 6-113. Layer data selection dialog.

The user interface items available in the dialog:

File name
Name of the file.

Layer name
Name of the layer.

Name field

Field used for item name. Set automatically from encoding selection dialog but can be adjusted
here also.

Population field
Field used for population data.

Country field
Country name field.

Line stroke width field
Line width. Guides rendering of lines.

Select stored items
Select items individually, select them all, or use Filter dialog to select subset of items

Toggle all
Select all fields from file.

Filter/Select...

174 LightningChart® .NET User’s Manual, rev. 10.5

Select fields which has a field with selected values. In the image above, only items with
SOVEREIGNT field set to “Canada” or ”"United States” are selected in the map.

Inverted

Invert filter selection (fields selected with filter are not included in resulting map file).

Select stored fields per item

Click on fields which should be included for each item. The fields are key values for Dictionary
class, which contains the fields per item.

6.32.7.2.4 Item filter

This dialog is opened from Layer data selection dialog and is used to filter items for resulting
map.

Ttern filter E'@

Field

[SOVEREIGNT -]

Values

[] Cameroon -
[7] Cape Verde
[] Central African Republic -

Figure 6-114. Item filter dialog.

Field
Select the field on which the filtering is based.

Values
Select values which are included in the resulting items.

The above selection means that items, whose field name SOVEREIGNT contains value “Canada”,
are included in the resulting map.

6.32.8 Importing and replacing map layers

User can import new layers to the map and replace existing layers. There are four methods for
importing and replacing a layer in the map from Maps interface. This is very useful when retrieving
frequently updated shp data while the software application is running.

Copyright LightningChart Ltd 2009-2023 175

ImportNewLayer methods inserts a new map layer to given layer index and ImportReplacelLayer
methods replaces the map layer at the given layer index.

public MapConverter.ConversionResult ImportNewLayer (String shpFilename,
int targetlayerIndex),

where shpFilename is the name of the source shp file name and targetLayerindex is the index
of the new layer. This method uses dialogs presented above for setting up map configuration.

public MapConverter.ConversionResult ImportNewlLayer (String shpFilename,
int targetlayerIndex, String configFile),

where shpFilename is the name of the source shp file name, targetLayerindex is the index of
the new layer and configFile is map configuration file name. This method uses configuration
file created with dialogs presented above.

public MapConverter.ConversionResult ImportReplacelayer (String
shpFilename, int targetlLayerIndex),

where shpFilename is the name of the source shp file name and targetLayerindex is the index
of the new layer. This method uses dialogs presented above for setting up map configuration.

public MapConverter.ConversionResult ImportReplacelayer (String
shpFilename, int targetlayerIndex, String configFile),

where shpFilename is the name of the source shp file name, targetLayerindex is the index of
the new layer and configFile is map configuration file name. This method uses configuration
file created with dialogs presented above.

Configuration file is a plain xml file, which can be edited with a text editor, though editing is not
recommended.

176

LightningChart® .NET User’s Manual, rev. 10.5

6.33 Tile maps

Demo examples: HERE Maps streets; HERE Maps satellite; HERE Maps with small charts
LightningChart has support for the following on-line tile data services:

e Here: Street maps, Satellite imagery

a4 Misc
Above\ectorMap True
Alphalevel 255
Cachelmages True
HEREAppCode
HEREApRID
HEREUseProduction False
ServerCallCount 0
ShowTileBorders False
Street [=]
Visible True

Figure 6-115. Properties of a TileLayer.

Add TileLayer object(s) in ViewXY.Maps.TileLayers collection. Several layers can be inserted and
made semi-transparent with Alphalevel property. The TileLayer objects are rendered in the order
of appeareance in the TileLayers collection, the first layer being in the background. By setting
AboveVectorMap = False, the layer renders before the vector map, if such are defined (see 6.32).
By default, the TileLayer renders after the vector maps.

TileLayer gets information as small images from on-line service provider through http protocol and
shows them in the chart area. The images are refreshed when zooming or panning the map view.

Loading a new set of tiles will take some time, up to several seconds.

Tile cache

The chart stores the tiles into a cache folder, which greatly reduces the loading time when panning
or zooming frequently in the same region. When the chart needs to show a tile, it first checks if it
can be found in the cache folder, and if not, retrieves it from the web service. In a team use, where
many workstations need to access the tile maps, it is wise to select a shared local network server
folder. By default, the cache folder is c:\Users\[Current user]\AppData\Local\Temp.

Set the cache folder in ViewXY.Maps.TileCacheFolder.

Clear the cache folder by calling ViewXY.Maps.ClearTileCacheFolder() method.

Copyright LightningChart Ltd 2009-2023 177

6.33.1 HERE

LightningChart supports tile data service by Here. Developer or end user must make an own
contract with Here to be able to use the Here servers. Free trial keys can be acquired from

https://developer.here.com/plans/api/consumer-mapping

Selecting type

Set TileLayer.Type = Street to use street maps. The street maps can be zoomed in very near.

Figure 6-116. TileLayer.Type = Street.

Set TileLayer.Type = Satellite to use satellite imagery.

Figure 6-117. TileLayer.Type = Satellite.

178 LightningChart® .NET User’s Manual, rev. 10.5

https://developer.here.com/plans/api/consumer-mapping

Presenting series and other chart elements, like annotations, is possible.

Figure 6-118. Street maps with IntensityGridSeries presenting weather data.

6.34 StencilAreas

Demo examples: Maps with intensity series stencil; Chromaticity diagram, Silicon wafer map analysis
(WinForms only)

IntensityGridSeries, IntensityMeshSeries and Maps have StencilArea feature which allows masking in
or out areas of drawn data. For instance, if data is shown above a map, stencils can be used to limit the
visible data to certain map areas, such as countries. StencilArea can be applied by creating a new
StencilArea object, then defining its size as PointDouble2D -array via AddPolygon() or as a map layer
via AddMapLayerindex(), and finally adding them to the series that should be masked.

There are two types of StencilAreas:

e AdditiveAreas creates a positive stencil mask - only data inside the area is drawn, while the
outside is clipped.

e SubtractiveAreas creates a negative stencil mask - data inside the area is clipped, while the
outside is drawn. Note that SubtractiveAreas are designed to work only together with
AdditiveAreas - without them no clipping is applied.

Copyright LightningChart Ltd 2009-2023 179

Whenever a StencilArea object is added to the list (AdditiveAreas or SubtractiveAreas),
InvalidateStencil() or InvalidateData() should be called for the respective series. It is also
recommended that the array of points defining the stencil is set in clockwise order.

6.34.1 AdditiveAreas

Use AdditiveAreas to define the area that should be drawn. Everything outside it will be clipped.
// Defining an additive StencilArea to an IntensityGrid

PointDouble2D[] stencilPoints = new PointDouble2D[] {
new PointDouble2D (30, 5),
new PointDouble2D (30, 95),
new PointDouble2D (195, 95),
new PointDouble2D (195, 5)

}i

StencilArea stencilArea = new StencilArea(intensityGrid.Stencil);
stencilArea.AddPolygon (StencilPoints) ;
_intensityGrid.Stencil.AdditiveAreas.Add (stencilArea);
_intensityGrid.InvalidateStencil();

Without stencils

With AdditiveArea

Figure 6-119. An IntensityGrid without any stencils on the top. On the bottom, the same grid with an
AdditiveArea created by using the code above.

180 LightningChart® .NET User’s Manual, rev. 10.5

6.34.2 SubstractiveAreas

Use SubstractiveAreas to define areas which should not be drawn inside an AdditiveArea.
// Defining two substractive StencilAreas to an IntensityGrid

PointDouble2D[] pnt2 = new PointDouble2D[] {

new PointDouble2D (130, 70),

new PointDouble2D (130, 90),

new PointDouble2D (160, 90),

new PointDouble2D (160, 70),
}s
StencilArea stencilArea2 = new StencilArea(heatMap.Stencil);
stencilArea?.AddPolygon (pnt2) ;
_heatMap.Stencil.SubtractiveAreas.Add (stencilArea2);
_heatMap.InvalidateStencil();

PointDouble2D[] pnt3 = new PointDouble2D[] {

new PointDouble2D (50, 10),

new PointDouble2D (50, 25),

new PointDouble2D (90, 25),

new PointDouble2D (90, 10),
}i
StencilArea stencilArea3 = new StencilArea(heatMap.Stencil);
stencilArea3.AddPolygon (pnt3) ;
_heatMap.Stencil.SubtractiveAreas.Add (stencilAreal);
_heatMap.InvalidateStencil();

130 140 150 160

Figure 6-120. An IntensityGrid with two SubstractiveAreas, set by using the code above. Note that an AdditiveArea has
to be set before using SubstractiveAreas.

Copyright LightningChart Ltd 2009-2023 181

6.34.3 Multiple StencilAreas

It is possible to set multiple StencilAreas, both additive and substractive ones. In case two or more
areas overlap, the areas are joined.

Additive Area

Substractive Area

e Area 2

3

Substractive Area 4

Substractive Area 3

100 110 2 3 150 160
Horizontal / ym

Figure 6-121. Multiple StencilAreas are used. Some SubstractiveAreas overlap so the areas are joined. Transparent polygons
with visible borders are also drawn to mark the locations of the stencils.

6.35 Data cursors

Starting from version 10.4, ViewXY has a built-in data cursor, which automatically tracks the closest series
value to the mouse cursor and shows it in a result table. The cursor consists of horizontal and vertical
hair cross lines, tracking point at the location of the closest data value, axis labels showing the current X-
and Y-values, and the result table, which besides the axis values also shows the series name and its color.

Data cursor can be enabled or disabled via Visible property. It is also possible to hide some of the cursor
components such as the lines or the axis labels individually by setting ShowHaircrossLines or ShowLabels,
or other respective “Show” properties based on what should be hidden, false. The appearance of the
cursor can also be modified via component specific properties. LabelFont modifies the axis label texts,
LineStyle can be used to customize the hair cross lines, and TrackingPointStyle allows altering the
tracking point. Results property contains all the options to modify the result table.

// Enables data cursor but hides its axis labels.
_chart.ViewXY.DataCursor.Visible = true;
_chart.ViewXY.DataCursor.ShowLabels = false;

// Modifying result table.
_chart.ViewXY.DataCursor.Results.Background.Color = Colors.DarkBlue;

182 LightningChart® .NET User’s Manual, rev. 10.5

v DataCursor
LabelFont Segoe Ul 12pt

RealTime Tracking False

v Results
Background
Border
DataRowFont Segoe Ul 12pt
Padding ol il
RotateAngle 0
TextColor [] White
TitleFont Segoe Ul 14pt

UseSenesTitleColor | False
ShowColorindicator True
ShowHaircrossLines True

ShowLabels True
ShowResul Table True
ShowTag False

Show TrackingPoint True
Snap ToNearestDataPoir False

strTag Tag
TrackingPoint Style
Visible True

Figure 6-122. Property tree of the data cursor.

LightningChart® .NET

I HCla)
1 X | 9,308

M —H20
M — Hi+a)
M — oHea)
M — da
M — na(+a)
HCl(a)

M
B — NaoH@)
. =

10
olume (ml)

Figure 6-123. Data cursor has been enabled. No individual components have been hidden.

Data cursor changes its behaviour depending on whether the tracked series has a visible line or just visible
data points (scatter plot). If the line is visible, the cursor finds the nearest series and its value vertically
in the cursor’s current X-position. If there are no lines visible, the cursor tracks the nearest data point in
any direction. Enabling SnapToNearestDataPoint overrides this making the cursor always finding the
nearest actual data point value in any direction.

Copyright LightningChart Ltd 2009-2023 183

It should be noted that using data cursor in demanding real-time applications can decrease the
performance significantly since the cursor is constantly calculating the nearest data value. To counter
this, the cursor has RealTimeTracking property, which when enabled increases the overall performance.
The drawback is that the cursor is updated less frequently and may seem laggy especially when the
mouse is moved around scrolling or sweeping chart.

Intensity grid
|X 3220
Y 658
Value 59.8567959095917 —
Color 255,255,204,0

@
=
=
]

x

©
>

M Intensity grid

-50.0 0.0 500 100.0 Units

500 800 900 1000
X axis title

Figure 6-124. Data cursor tracking an Intenstiy Grid. Besides X- and Y-values the cursor shows the grid’s Value and Color fields.

6.36 LineSeriesCursors

Demo examples: Point line; Multi-channel cursor tracking; Segments with splitters; Logarithmic axes

Line series cursors allow visual analysis of line series data by tracking the values by X coordinate. Series
values are can only be resolved with series implementing ITrackable interface (SampleDataSeries,
SampleDataBlockSeries, PointLineSeries, LitelLineSeries, DigitalLineSeries, AreaSeries, HighLowSeries).
For other series types, Y coordinate is not automatically tracked by cursors.

Add LineSeriesCursor object into LineSeriesCursors collection. Enable SnapToPoints to jump the cursor
from point to point. Set the cursor tracking style with Style property. When Style is set to PointTracking,
any tracking point style can be used, even a bitmap image. When using HairCrossTracking style, a
horizontal line is drawn at line series point Y value. If multiple points of same series hit in cursor location,
line is drawn in the middle of minimum and maximum points.

184 LightningChart® .NET User’s Manual, rev. 10.5

Cut Data Chart

Figure 6-125. Line series cursors: Vertical point tracking cursor (cyan line and crosses), hair-cross tracking cursor (red lines)
and vertical full-length cursor without tracking (yellow line)

By enabling IndicateTrackingYRange a horizontal bar is drawn ranging from minimum to maximum of
the points hitting in the middle of the cursor.

LightningChartUItimate

Figure 6-126. Hair-cross cursor with Y range indicator (IndicateTrackingYRange = true).

Copyright LightningChart Ltd 2009-2023 185

6.36.1 Solving the data values in the position of LineSeriesCursor

Demo examples: Multi-channel cursor tracking
The series implementing ITrackable interface can be solved by X screen coordinate or by X axis value.

Trackable series have methods for accurate and coarse value solving. The accurate method
SolveYValueAtXValue loops through data points if necessary and finds the nearest data point match.
The coarse method SolveYCoordAtXCoord uses cached rendering data of the series for solving the
matching Y screen coordinate.

6.36.1.1 Accurate method, solving Y value by X value using data points array

LineSeriesValueSolveResult result =
series.SolveYValueAtXValue (cursor.ValueAtXAxis) ;

if (result.SolveStatus == LineSeriesSolveStatus.OK)
{
//PointLineSeries may have two or more points at same X value. If so,
center it between min and max
yValue =(result.YMax + result.YMin) / 2.0;
return true;

Note! When cursor.SnapToPoints is disabled, the SolveYValueAtXValue returns interpolated value
between the points adjacent to it (the intersection of cursor line and the series line).

Figure 6-127. SolveYValueAtXValue interpolates the value between adjacent data points when SnapToPoints is disabled.

6.36.1.2 Coarse method, solving Y screen coordinate by X coordinate using data points array

LineSeriesCoordinateSolveResult result =
series.SolveYCoordAtXCoord ((int)Math.Round (fCoordX)) ;

if (result.SolveStatus == LineSeriesSolveStatus.OK)

{
fCoordY = (result.CoordBottom + result.CoordTop) / 2f;
if (axisY.CoordToValue ((int)Math.Round (fCoordY), out yValue) ==
false)

{
return false;

}

186 LightningChart® .NET User’s Manual, rev. 10.5

When the series holds a lot of data points, say > 100.000, it’s typically much faster to use the coarse
method. However, it can be very inaccurate if the chart size or Y segment height in pixels is low. The
coarse method’s screen coordinates can be converted into axis values by calling CoordToValue method
of X and Y axis.

It is a good practice to use an AnnotationXY object to display values next to the cursor, see 6.26

229,4 kW
312,5 ki

200,1 kW

= 269,7 kW

Ml i : 278,0 kW
) R i : 301,7 kW
257,3 kU

189,0 ki

. 8000

!"\J‘\J '/hl\”/"i\l\'”\q \‘x\}',“ U \ Jl"L\ . \JI\/"\{H\J \ «v'*\

y 1
00:00 00:05 00:10 UU 15 DU 20 D[I 25 00:40
Time

Figure 6-128. LineSeriesCursor used to track PointLineSeries. The values are shown in an AnnotationXY object.

6.36.2 Advanced LineSeriesCursor features

LineSeriesCursor has two advanced features, which allow more control over which series are tracked and
how the tracking is done.

TrackLineSeries can be used to determine if the cursor should resolve and draw a track point for a series
implementing ITrackable interface. TrackLineSeries is defined as a predicate. For example, the following
tracks only series that are assigned to the first Y-axis.

cursor.TrackLineSeries = new Predicate<ITrackable> (TrackableSeriesSelection);

private bool TrackableSeriesSelection (ITrackable obj)

{
return (obj as SeriesBaseXY) .AssignYAxisIndex == | |
(bool) 'checkBoxTrackLineSeries.IsChecked;

Copyright LightningChart Ltd 2009-2023 187

SolveYValue is a Func delegate type which can be used to override the cursor’s original Y-value solving and
tracking method. Input parameter is a series implementing ITrackable interface, while the output is a
LineSeriesCoordinateSolveResult struct. For instance, the following changes the cursor to track the
maximum Y-value between two cursor lines.

cursor.SolveYValue = CustomYValueSolver;

private LineSeriesCoordinateSolveResult? CustomYValueSolver (ITrackable series)

{

PointLineSeries plSeries = series as PointLineSeries;

AxisX xAxis = chart.ViewXY.XAxes[0];

int iMinIndex = 0;

double dMinX = chart.ViewXY.LineSeriesCursors|[0].ValueAtXAxis;
double dMaxX = chart.ViewXY.LineSeriesCursors([l].ValueAtXAxis;
for (int 1 = 0; 1 < plSeries.PointCount; i++)

{
if (dMinX <= plSeries.Points[i].X && plSeries.Points[i].X <= dMaxX &&
plSeries.Points[i].Y > dMaxy)
{
iMinIndex = 1i;
dMaxY = plSeries.Points[i].Y;

}
float fNearestX = xAxis.ValueToCoord(plSeries.Points[iMinIndex].X, false);
float fCoordY = chart.ViewXY.YAxes[0].ValueToCoord (dMaxY, false);

return new LineSeriesCoordinateSolveResult ()
{

NearestX = fNearestX,

CoordBottom = fCoordy,

CoordTop = fCoordYy,

MinIndex = iMinIndex,
PointCount = 1,
SolveStatus = LineSeriesSolveStatus.OK

6.36.3 Solving the data values from FreeformPointLineSeries

FreeFormPointLineSeries implements methods for accurate and coarse value solving, which are mostly
similar to the methods used for solving data values in the position of LineSeriesCursor for series
implementing the ITrackable interface.

Note! FreeformPointLineSeries does not implement ITrackable interface and therefore cannot be tracked
with LineSeriesCursor.

The accurate method SolveYValuesAtXValue solves all Y-values for the given X-axis value and returns an
iterable list of LineSeriesValueSolveResult-structs.

188 LightningChart® .NET User’s Manual, rev. 10.5

IList<LineSeriesValuesolveResult> results = series.Solve¥ValuesAtXValue(value);
foreach (LineSeriesValueSolveResult result in results)
{
if (result.Solvestatus == LineSeriesSolvestatus.0K)
/i Do
1
else if (result.SolveStatus == LineSeriesSolvestatus.NoPointsFound)
/i Do
1

The coarse method SolveYCoordsAtXCoord solves all Y screen coordinates for given X screen coordinate
and returns an iterable list of LineSeriesCoordinateSolveResult-structs.

rdinateSolveResult> results = series.S5olveYCoordsAtXCoord(fCoordX);

foreach{Lineseri ordinateSolve Result result in results)
{
if{result.SolveStatus == LineSeriessolvestatus.OK)
ff Do
1
else if(result.SolveStatus == LineSeriesSolveStatus.MoPointsFound)
/i Do
1

If the given X-axis value or X screen coordinate hits between points, the result(s) will be formed from the
interpolated value(s) / coordinate(s).

6.37 EventMarkers

Demo examples: Tracking markers; Map route; Heatmap color spread; Segments with splitters; Bubble

chart; Campbell diagram; Curve node editing

EventMarkers allow marking a point of interest, where something special occurred during real-time

monitoring, or if just wanting to mark a piece of data with a special annotation. Define the marker symbol

with Symbol property and a text label with Label property. Set the vertical position with VerticalPosition
property and use Offset to shift the object property if necessary. All markers must be assigned with

XValue, which sets the marker’s position on X axis.

To select the shape of the marker, set Symbol.Shape. Available shapes are Rectangle, Circle, Triangle,

Flag, FlaglLightning, Cross, CrossAim, Bitmap, HollowBasic, HollowBasicActive, HollowHarmonic,

HollowActiveSideband, HollowSideband, HollowTailedActive and HollowTailed.

Copyright LightningChart Ltd 2009-2023 189

02-03-2017
20:34:30
02-03-2017
20:35:00
02-03-2017
20:35:30

[
~
[=]

W 2@
:.:o
o m
[I =]
(=" ¥ |

Figure 6-129. Markers in trading example.

6.37.1 Chart event markers

ChartEventMarker collection allows adding chart markers. A chart marker can be used to indicate a point
of interest, like “Test person stood up”, “Capacitor bypassed”. Unlike series event markers, chart event
markers are not attached to a specific series. The markers can be dragged with mouse into another

location.

The position of a chart marker can be set via VerticalPosition, XValue and Offset -properties.
Furthermore, setting BindToXAxis true binds the marker to a specific X-axis. In practice, this makes the
marker to stay at its current X-value and move when for example the X-axis is panned. When BindToXAxis
is disabled, the marker is kept in the same chart position no matter how the axes are moved. If there are
several X axes, AssignXAxisIndex can be used set which axis the marker is bound to.

ClipinsideXRange can be used together with BindToXAxis enabled. It makes a marker to clip when a
specific X-axis value it is bound to is not within the visible X-axis range. This value can be set via XValue -
property. Moving the marker manually with mouse disables this setting. There is also ClipInsideGraph -
property, which determines if a chart marker can be drawn outside the graph area.

190

LightningChart® .NET User’s Manual, rev. 10.5

6.37.2 Line series event markers

Line series have SeriesEventMarkers collection property. It can be used to assign series specific event
markers. The series event markers can be dragged with mouse to another location, while keeping the
event marker attached to series values. To enable this, marker’s VerticalPosition must be set to
TrackSeries. This is available for series implementing ITrackable interface.

By setting HorizontalPosition to SnapToPoints, the marker aligns itself horizontally to position of nearest
data point. HorizontalPosition = AtXValue allows placing the marker at any x value. Respectively,
VerticalPosition = AtYValue allows setting the marker vertically to any Y level.

In addition to normal set of shapes, SeriesEventMarker supports two special Symbol.Shape settings,
HollowYAxis and HollowYAxisActive, which allow vertical line with Y axis ticks projection. They have a
pixel wide vertical line which picks positions of MajorTicks and MinorTicks from the Y axis the series is
attached to. To adjust the tick lengths, edit VYAxis.MajorDivTickStyle.LineLength and
YAxis.MinorDivTickStyle.LineLength properties.

/' Hollow¥uis/
f 1 |

I
10

Figure 6-130. Two special SeriesEventMarkers shapes: HollowYAxis and HollowYAxisActive. Very handy when making per-
series data cursors.

Copyright LightningChart Ltd 2009-2023 191

6.3

8 Persistent series rendering layers

Demo examples: Lines / points; Areas /high-lows

PersistentSeriesRenderingLayer can be used for extremely fast rendering of repetitive line/points data,
or line/points/high-low/area fill data that is plotted in same X and Y range over and over again.

For example, consider a case of FFT monitoring: Every second 20 new data strips are received. The newest
data should be visible as well as all the historic traces. But the monitoring lasts for hours. By rendering
this kind of data with regular rendering, 20 * 60 * 60 = 72000 new line series are needed every hour. The
PC will run out of memory probably before 1 hour is monitored. It is certain that rendering will slow down
so badly that it’s not usable anymore.

PersistentSeriesRenderingLayer is kind of a bitmap, that allows adding rendering data incrementally in
it. It keeps the graphics until cleared by command. This way, each update round, only one series needs
to be rendered on the layer, followed by the layer rendering on the screen. CPU load or memory footprint
doesn’t rise. If existing data should be faded away gradually, it can be done by multiplying the alpha of
the bitmap pixels.

It is possible to create as many PersistentSeriesRenderinglLayer objects as needed, and any count of
series can be rendered on each of them, any update round.

i)
9
]

Y

Latest — Historic

Figure 6-131. Persistent layer shows historical traces, in green color. A regular PointLineSeries is shown over it, in red color.

192

LightningChart® .NET User’s Manual, rev. 10.5

o
2
3
>-

Historic

600 650 800
X axis title

Figure 6-132. Persistent layer shows historical traces, in green color. MultiplyAlpha method is called before updating new
data in the rendering layer making the oldest traces fade away.

6.38.1 Creating the layer

PersistentSeriesRenderingLayer is not a sub-property of ViewXY and can’t be added with Visual Studio’s
property grid. PersistentSeriesRenderingLayer objects must be created in code. Create it as follows:

using Arction.[edition].Charting.Views.ViewXY;

PersistentSeriesRenderinglLayer layer = new PersistentSeriesRenderinglayer
(m_chart.ViewXY, m chart.ViewXY.XAxes[O0]);

By supplying ViewXY object as parameter, it binds the layer in ViewXY. Supply the same XAxis object that
is used with the series rendered on it.

Multiple layers will render in the order of creation with the chart.

Copyright LightningChart Ltd 2009-2023 193

6.38.2 Clearing the layer

layer.Clear() clears the layer and initializes the color with ARGB=(0,255,255,255).

layer.Clear(Color color) clears the layer with given color. In most cases, it’s most useful to set the same
color wused in the background, but set its A = 0. With black background, use
layer.Clear(Color.FromArgb(0,0,0,0));

6.38.3 Adjusting layer alpha

MultiplyAlpha(value) allows making the layer more transparent or opaquer. Multiplying effects every
pixel in the layer separately.

By supplying value < 1, transparency will be increased (decays the layer).
By supplying value > 1, opacity will be increased (brings the layer more visible).
Takes no effect with value of 1.

For example, MultiplyAlpha(0.8) sets the alpha to 80% of existing alpha. MultiplyAlpha(2) adjust it to
200%.

6.38.4 Rendering data into the layer

Render the data into the layer by using any of PointlineSeries, SampleDataSeries,
FreeformPointLineSeries, HighLowSeries or AreaSeries objects. They can be series that have been added
into ViewXY.PointlLineSeries, ViewXY.SampleDataSeries, ViewXY.FreeformPointLineSeries,
ViewXY.HighLowsSeries or ViewXY.AreaSeries collection. A temporary series that have not been added
into these collections can also be used. Fill the data in the series as usual (see chapter 6.6.4 for
PointlLineSeries, 6.8.2 for SampleDataSeries, 6.11 for FreeformPointLineSeries, 6.16.4 for HighLowSeries
and 6.17.1 for AreaSeries).

layer.RenderSeries(PointLineSeriesBase series): Render one series on the layer.

layer.RenderSeries(List<PointLineSeriesBase> serieslList): Render all given series on the layer. More
efficient than calling layer.RenderSeries(PointLineSeriesBase series) for each series separately.

Note! All the given series will be rendered on the layer, even if their Visible is set to False.

Note! The X axis that used with the series must be the same as the one supplied for
PersistentSeriesRenderinglLayer constructor. Otherwise, the series object will be skipped.

194 LightningChart® .NET User’s Manual, rev. 10.5

Note! RenderSeries is for rendering INTO the layer. The layer itself will be rendered just before regular
series (PointLineSeries, SampleDataSeries, FreeformPointLineSeries, HighLowSeries, AreaSeries).

6.38.5 Disposing the layer

To dispose the layer and prevent it from rendering with the chart, call layer.Dispose().

6.38.6 Anti-aliasing data in the layer

To anti-alias the data in the chart rendering stage, set layer.AntiAliasing to True. This enables anti-
aliasing also if the hardware doesn’t support it.

6.38.7 Getting list of layers

ViewXY.GetPersistentSeriesRenderinglLayers() returns list of all created layers, including
PersistentSeriesRenderingintensityLayers.

6.38.8 Some layer limitations to be aware of

Due to its special rendering technique, please keep these limitations in mind:
- X axis ScrolIMode must be set to None. Real-time scrolling of X axis is not possible in this approach.

- Zooming, panning, axis adjustment and chart resize will cause the image to be in un-sync with axis
ranges. These features should be disabled when using persistent plotting, or the application logic made
so that it clears the layer and recreates temporarily the older line series for new layer rendering (there
are event handlers for axis range change and resize).

- Chart resizing will clear the layer, as well as resuming from Windows desktop lock state.
- Mouse interactivity is not supported on the series rendered only on the layer

- EMF/WMF/SVG export, copy to clipboard in vector format, and print in vector format don’t support the
layer. Only raster formats are supported.

Copyright LightningChart Ltd 2009-2023 195

6.39 Persistent series rendering intensity layers

Demo examples: Intensity persistent layer, signal

PersistentSeriesRenderingintensityLayer allows collecting traces into a layer and coloring it by the hit
count per pixel. The coloring is made by using a value-range palette. The traces can be used with the
same series types as in PersistentSeriesRenderingLayer (see chapter 6.38). They are very much similar
to it, main difference being the coloring. When rendering a trace in a location of a pixel again with second
rendering call, the intensity of it grows, increasing its value in the value-range palette.

Hit count q'
100 d

>
@
o
=
=
£
<

Figure 6-133. Persistent intensity layer highlights areas of concentrated activity, in this case in yellow and red.

Figure 6-134. Repetitive signal trace is rendered in the same region. On the left, only a couple of traces have been rendered
on the layer, showing all colors in blue. On the middle, a lot of traces have been rendered, but mostly on different coordinates.
In the intersections of the traces, the hit count exceeds the trace count of 10 defined in the palette for yellow color threshold.

In the rightmost image, hundreds of traces have been rendered in total, and intersections start to exceed threshold defined
for red color.

196 LightningChart® .NET User’s Manual, rev. 10.5

6.39.1 Creating the layer

The PersistentSeriesRenderingintensityLayer is not a sub-property of ViewXY and can’t be added with
Visual Studio’s property grid. PersistentSeriesRenderingintensitylLayer objects must be created in code.

Create it as follows:
using Arction.LightningChart.Views.ViewXY;

PersistentSeriesRenderingIntensitylLayer layer = new
PersistentSeriesRenderingIntensitylayerngLayer (m_chart.ViewXY,
m chart.ViewXY.XAxes[0]);

6.39.2 Clearing the layer

layer.Clear() clears the layer and resets the counters.

6.39.3 Changing palette colors

Define the palette type and steps in ValueRangePalette property of the layer. ValueRangePalette.Type
= Gradient makes a gradient coloring, ValueRangePalette.Type = Uniform makes the layer render with
discrete color steps.

6.39.4 Adjusting the intensity effect of new trace and decay of old traces

Use NewTracelntensity property to control how great intensity effect the new trace rendered with
RenderSeries call gets. Typical value is 1...100, depending on how fast the color range is set to fill up with
the traces.

Use HistoryintensityFactor to adjust the decay speed of the old traces. Typical value is in range of 0.5 —
0.99.

Note that setting HistoryIntensityFactor itself doesn’t update the layer until the next call of RenderSeries.

6.39.5 Rendering data into the layer

Render a PointLineSeries, FreeformPointLineSeries, SampleDataSeries, HighLowSeries or AreaSeries to
the layer by RenderSeries method.

Copyright LightningChart Ltd 2009-2023 197

layer.RenderSeries(PointLineSeriesBase series): Render one series on the layer.

layer.RenderSeries(List<PointLineSeriesBase> seriesList): Render all given series on the layer. No
performance gain over layer.RenderSeries(PointLineSeriesBase series) though.

When the data is updated into the layer, NewTracelntensity is used for the new trace. Old trace data is
decayed with HistoryintensityFactor at the same time. layer.RenderSeries(List<PointLineSeriesBase>
serieslList) decays old traces after every series object.

6.39.6 Disposing the layer

To dispose the layer and prevent it from rendering with the chart, call layer.Dispose().

6.39.7 Anti-aliasing data in the layer

To anti-alias the data in the chart rendering stage, set layer.AntiAliasing to True. It enables the anti-
aliasing also if the hardware doesn’t support it.

6.39.8 Getting list of layers

ViewXY.GetPersistentSeriesRenderingLayers() returns list of all created layers, including
PersistentSeriesRenderingLayers.

6.40 Custom controls - Zoom bar

Zoom bar is a custom XY chart, that can be used to get an overview of the whole dataset and to zoom
the chart to specific areas. When a Zoom bar is created, it takes the chart it is referring to as a parameter.
Since Zoom bar is a separate instance of LightningChart, it can be placed on a different container than
the main chart. CustomControls namespace needs to be used in order to use Zoom bars.

using Arction.Wpf.Charting.CustomControls;

// Creating a LightningChart object, then adding a Zoom bar referring to it.
LightningChart chart = new LightningChart();

mainGrid.Children.Add(chart);

zoomBarGrid.Children.Add (new ZoomBar (ref chart));

198 LightningChart® .NET User’s Manual, rev. 10.5

Zoom bar automatically shows all the series in the main grid. However, ZoomBarOptions, which contains
all properties to control Zoom bar behaviour, has SeriesToUse option that allows hiding specific series
types. It is possible to hide the line while keeping the points visible and vice versa. By default, points are
hidden in Zoom bar, only the line is visible. Note that if the line or the points are not visible in the main
chart, they cannot be shown in the Zoom bar either.

// Hiding all PointLineSeries lines in the Zoom bar chart.
zb.ZoomBarOptions.SeriesToUse.PointlineSeries.LineVisible = false;

Figure 6-135. A Zoom bar has been added below the main chart, giving an overview of the whole data. Data points of the
Point Line Series are visible in the main chart but not for the respective series in the zoom bar.

In real-time charts, where new data is constantly added, the Zoom bar is unable to update itself
automatically. In these cases, series specific add data method such as AddDataToPointLineSeries() or
AddDataToHighLowsSeries() should be called with the added data points as a parameter.

// Updating series in Zoom bar. The first parameter is the series index.
zoomBar .AddDataToPointLineSeries (0, seriesPointArray);

6.41 Custom controls - Violin plot

Violin plot is a custom XY chart, which depicts distributions of numeric data for one or more groups using
density curves. It is an own instance of LightningChart, meaning it needs to be added to a parent
container such as grid. CustomControls namespace needs to be used in order to create Violin plots.

using Arction.Wpf.Charting.CustomControls;

ViolinPlot violin = new ViolinPlot();
containerGrid.Children.Add(violin);

Copyright LightningChart Ltd 2009-2023 199

Adding data to Violin plot is done via AddGroupData() method. The method takes several parameters
regarding its size and position such as minimum, maximum and width, as well as styling options such as
color and label text. The last parameter of the method is the actual data points as a PointDouble2D
array. Several violins can be added to the same plot by calling AddGroupData() many times.

// Adding data to violin plot.

_Violin.AddGroupDbata (45, 95, 1, 0.5, "Group A", Colors.Yellow, "A",
pointArrayl);

_Violin.AddGroupDbata (54, 79, 2, 0.5, "Group B", Colors.Magenta, "B",
pointArray?2);

_Violin.AddGroupDbata (56, 97, 3, 0.5, "Group C", Colors.Orange, "C",
pointArray3);

The Violin plot’s axis titles can be changed with SetXaxisTitle() and SetYaxisTitle() methods. Ypadding()
can be used to set how much vertical empty space is left between the violins and the chart edges.

The regular LightningChart object the Violin plot is based on can be accessed via GetinnerChart() method.
This allows modifying for example the polygon objects the violins are build of.

[}
»
<
©

X axis title

Figure 6-136. A Violin plot has been created. Four violins have been added via AddDataGroup() method.

200 LightningChart® .NET User’s Manual, rev. 10.5

7. View3D

View3D allows visualizing data in 3D space. 3D model can be zoomed, rotated and lit up with various
ways. Different series types can be placed into the same 3D view to make a combined visualization.

3D chart view
Annotations (Collection)
AutoSizeMarging False
BarSeres30 (Collection)
BarViewOptions
Border Border
Camera
ClipContents Falze
Dimensions
FrameBox FrameBox - col -1
LegendBox LegendBox 3D
Lights (Collection)
Margins 0.0.0.0
MeshModels (Collection)
OrientationAmows
Point LineSeres3D (Collection)
Polygons (Collection)
Rectangles (Collection)
SurfaceGrd Seres3D (Collection)
SurfaceMeshSeres3D (Collection)
VolumeModels (Collection)
WalOnBack WallXY
WallOnBottom WallxZ
WallOnFront WallXY
WallOnLeft WallYZ
WallOnRight WallYZ
WallOnTop WallxXZ
Waterfall Series3D (Collection)
¥ AwisPrimary 30 Highlighting temBase
¥ AwisSecondary 30 Highlighting temBase
Y AwisPrimary 30 Highlighting temBase
Y AwisSecondary 30 Highlighting temBase
ZhwisPrimary 30 Highlighting temBase
ZhxisSecondary3D Highlighting temBase
ZoomPanOptions

Figure 7-1. View3D object main tree.

Copyright LightningChart Ltd 2009-2023 201

7.1 3D model and dimensions

Y+

Z+

>
X: X+

Y-
v

Figure 7-2. 3D model positive and negative directions.

3D model is constructed in the center of 3D world. Dimension magnitudes define the size of the model
box in 3D space. Walls and axis sizes are defined with this dimension box. Use the Dimensions property
to set each dimension magnitude.

When camera rotation is not defined, positive X direction is to the right, positive Y dimension upwards
and positive Z direction inwards to the screen.

7.1.1 World coordinates

Some 3D objects use “World coordinates”, not axis values. For example, lights are positioned this
way to be independent from axis ranges. World coordinates can be called also as “3D model space
coordinates”.

The origin [0,0,0] is in the center of the model. The actual 3D model space ranges from [-
Dimensions.X/2 to Dimensions.X/2], [-Dimensions.Y/2 to Dimensions.Y/2] and [-Dimensions.Z/2 to
Dimensions.Z/2].

LightningChart provides methods to convert values between series values, axis values, world
coordinates and screen coordinates. See the demo application examples and help documentation
for details.

202 LightningChart® .NET User’s Manual, rev. 10.5

Figure 7-3. Example of 3D view setup. Dimensions are set to X=100, Y=40, Z=80. Walls visible: left, bottom, back. Perspective
camera is used.

7.2 Walls

Walls (WallOnFront, WallOnBack, WallOnTop, WallOnBottom, WallOnLeft, WallOnRight) are used
to present axis grids and gridstrips and to give a base for the axes. By default, bottom, left, right, back
and front walls are visible. Their AutoHide property is set true. When rotating the view, the
obstructing walls are temporarily hidden so that they don’t block the view of chart contents. To force
a wall visible, set Visible = true and AutoHide = false.

Use XGridAxis, YGridAxis, ZGridAxis, GridStripColorX, GridStripColorY, GridStripColorZ and
GridStrips properties to select from which axes the grid is applied, and to modify the coloring of the
grid strips. The available properties depend on the wall orientation. FullTransparent property allows
showing only the grid while hiding the solid wall. Note that even if FullTransparent is enabled, the
grid still follows Visible and AutoHide properties of the wall.

Copyright LightningChart Ltd 2009-2023 203

7.3

FrameBox

A simplified 3D box presentation can be used instead of walls. Set Visible = false for every wall, then
set FrameBox.Style = AllEdges. Set the color or the frame with FrameBox.LineColor.

Figure 7-4. FrameBox visible, walls are hidden.

7.4 Camera

FieldOfViewAngle
MinimumYiew Distance
Orientation Mode
OrthographicCamera
Projection

Rotation

Rotation *Maximum
Rotation¥Minimum
Rotation

Rotation Maximum
Rotation Minimum
RotationZ
RotationZMaximum
RotationZMinimum
Target
ViewDistance

Figure 7-5. Camera properties.

45

50
ZXY_Estrinsic
Falze
Perspective
20

720

=720

-25

720

=720

0

720

=720

180

204

LightningChart® .NET User’s Manual, rev. 10.5

Camera type, location, distance and target together determine the 3D viewpoint. Use RotationX,
RotationY, RotationZ and ViewDistance to set the camera position in the 3D model space. Target the
camera to preferred direction by setting the Target property.

Select projection type with Projection property.

e Perspective, shows a realistic projection.

e Orthographic, projection type used in scientific and engineering applications. This selection is
recommended over Orthographiclegacy.

e OrthographicLegacy, (equivalent to OrthoGraphicCamera = True in LightningChart v.8.3 and
earlier). This is slower to render after zooming compared to Orthographic. It maintains the sizes
of the 3D objects, if they are defined in 3D world coordinates (not axis values). Also, the thickness
of the walls stays the same when zooming. Zooming changes the dimensions but does not affect
ViewDistance.

RotationX, RotationY and RotationY can be limited by setting boundaries via RotationXMinimum,
RotationXMaximum, RotationYMinimum, RotationYMaximum, RotationZMinimum and
RotationZMaximum properties.

Camera

Perspective
Y+ view angle

Figure 7-6. Perspective camera presentation in 3D space.

Figure 7-7. Perspective and orthographic camera views in 3D space.

Copyright LightningChart Ltd 2009-2023 205

Zoomed view in Orthographic and OrthographicLegacy differ as follows:

Orthographic

Figure 7-8. Orthographic projection type. On the left, unzoomed. On the right, zoomed in. Airplane (MeshModel3D) object
size grows on the screen along with other objects.

OrthographicLegacy

Figure 7-9. OrthographicLegacy. On the left, unzoomed. On the right, zoomed in. Airplane (MeshModel3D, see 7.14) object
size stays the same but 3D dimensions are changed.

206 LightningChart® .NET User’s Manual, rev. 10.5

7.4.1 Predefined cameras

Demo examples: Cameras and lights
Use SetPredefinedCamera method of View3D.Camera to set one of the predefined cameras.

// Setting predefined camera orientation
chart.view3D.Camera.SetPredefinedCamera(PredefinedCamera.BackOrthographic);

7.4.2 Camera orientation mode

LightningChart v8.4 added a new camera orientation mode with improved camera orientation definition.
The new mode called ZXY_Extrinsic (the name defines in which order the dimensions are calculated) is
now set to be the default orientation mode. It fixes many rotation-based issues especially near the poles
of the chart (i.e. camera on top of the chart). The old orientation mode, XYZ_Mixed, is still available but
will most likely become deprecated at some point in the future. Orientations can be accessed via
View3D.Camera.OrientationMode.

Rotations are also modified by this change. With the new camera orientation mode, one of the axis
directions (world unit vectors) is used as the horizontal mouse rotation axis. This is the axis of which the
camera is rotated around. Axis determination is automatically done when RotationX, RotationY or
RotationZ properties are changed. Closest axis to the camera’s up direction is selected as the rotation
axis, so that the rotations feel as natural as possible on all occasions.

The new orientation and rotation model allow views in the 3D scene that were previously impossible.

7.5 Lights

Lights can be freely positioned anywhere in the 3D model space. Several lights can be added into Lights
collection property. There are two different light types: Directional and PointOfLight.

?
il 2%

___________________________|

Figure 7-10. Directional light and point of light.

Copyright LightningChart Ltd 2009-2023 207

Note! Some series types allow suppressing lighting totally from its surface via SuppressLighting
property. Check it’s not enabled if the series should be correctly lit. Surface series have LightedSurface
property, which selects the surface side that is correctly lit.

Note! Placing all the lights inside the 3D model box can make the wall edges appear very dark, possibly

making axis ticks hardly visible. Adjust axis tick coloring in such case.

7.5.1

7.5.2

7.5.3

Directional light

In Directional light, the light rays are parallel, and the light intensity does not attenuate as the
distance increases. The light flux gets direction from Location and Target properties.
LocationFromCamera property allows using to the location of the camera as a source of light.

Point of light

In PointOfLight intensity attenuates as the distance grows. Use AttenuationConstant,
AttenuationLinear and AttenuationQuadratic properties to control the attenuation over distance.
Target is irrelevant with this light type, as the light is distributed equally to all directions.

Lights and materials

All 3D objects have a Material property. Material tells how to react to lights. Material’s DiffuseColor
reacts with DiffuseColor of a light. Material’s SpecularColor reacts with light’s SpecularColor. Diffuse
color can be understood as a matte base color, while specular color is the color that reflects off the
lit surface. Using high SpecularPower gives the object a metallic look.

Surface series have ColorSaturation property, valid range is 0...100%. High value boosts the surface

fill colors and reduces the shading effect.

208

LightningChart® .NET User’s Manual, rev. 10.5

7.5.4 Predefined lighting schemes

Demo examples: Cameras and lights

Use SetPredefinedLightingScheme method of View3D to select a built-in predefined lighting scheme.

Figure 7-12. Predefined ‘DiscoCMY’ scheme in use. The scheme is composed from three differently colored PointOfLights near the
ceiling. The spheres and cones are made with PointLineSeries3D.

7.6 Axes

For each dimension, there are two axes: primary and secondary. In other words, View3D has the
following axis properties available: XAxisPrimary3D, XAxisSecondary3D, YAxisPrimary3D,
YAxisSecondary3D, ZAxisPrimary3D and ZAxisSecondary3D.

In general, the 3D axes behave very much like ViewXY’s axes. Many of the properties and methods are
similar.

Copyright LightningChart Ltd 2009-2023 209

7.6.1 Location

The axes can be positioned in 3D model box corners. Use Location property of an axis to adjust the

position.
For X axis, the Location options are: BottomFront, BottomBack, TopFront and TopBack.

[]
e ForY axis, the Location options are: FrontLeft, FrontRight, BackLeft and BackRight.
e For Z axis, the Location options are: BottomLeft, BottomRight, ToplLeft and TopRight.
W o0
? 2
g s % EE |

S}

Primg ry >

50
Prims
Fimary y 1 ‘Dﬂrna,.‘., X 100

Figure 7-14. Default axis location setup, XAxisPrimary at Figure 7-13. ZAxisPrimary location set to BottomLeft.

BottomFront, YAxisPrimary at FrontLeft and
ZAxisPrimary in BottomRight.

0 De(‘\U”U(‘Hy Y
a0

/

)\}menld
=
=]
=)

So;:um_r'ar\; ¥

|
| |
Ill pn(ﬂ"%ﬁ .

100

Figure 7-15. Secondary axes set visible and their locations and colors set arbitrarily. Secondary Y axis ScaleType set to

Logarithmic.

210 LightningChart® .NET User’s Manual, rev. 10.5

7.6.2 Orientation

Each axis can be oriented in two planes. This affects the position and orientation of both axis ticks and
value labels.

e Xaxis: XY and XZ planes
e Y axis: XY and YZ planes
e Zaxis: XZ and YZ planes

100

50

» Aewiid

” 100

Figure 7-16. X axis orientation is set to XY, Y axis Figure 7-17. Y axis orientation stays same, but X axis orientation
orientation to XY, Z axis orientation to XZ. is changed to XZ and Z axis orientation is changed to ZY plane.

7.6.3 CornerAlignment

The axis alignment in 3D model box corners can be changed with CornerAlignment property. Use
MajorDivTickStyle and MinorDivTickStyle Alignment properties to control the text alignment.

Figure 7-18. Only Y axis is visible in this example. First figure: Y Axis CornerAlignment is set to Inside. Alignment properties in

MajorDivTickStyle and MinorDivTickStyle are set to Near. Second figure: CornerAlignment is set to AtCorner. Third picture:
CornerAlignment is set to Outside.

Copyright LightningChart Ltd 2009-2023 211

7.7 Margins

From LightningChart v.8.4 onwards, View3D supports margins. Similarly to ViewXY, when
AutoAdjustMargins is set true, the graph size is adjusted so that there’s enough space for all the axes
and chart title. If it is disabled, View3D.Margins property applies allowing setting margins manually. By
default, AutoAdjustMargins is set false.

View3D.MarginsChanged event can be set to trigger when a margin has been changed because of for
example resizing it.

The contents of the view are automatically clipped outside the margins. All contents are clipped other
than the chart title, annotations and legend boxes as their position is defined in screen coordinates,
allowing them to be freely positioned on the margins as well. A one-pixel wide border rectangle, Border,
can be drawn to display where the margins are. By default, the border is not visible in View3D. The color
of the rectangle can be changed via Border.Color.

Figure 6-19. On the left, the graph has no margins (all margins set to 0). On the right, margins are set and the content is clipped
outside them. Border.Visible is set True to mark where the margins of the view are.

7.8 3D series, general

View3D’s series allow data visualization in different ways and formats. All series are bound to axis value
ranges. For each dimension, the series can be selected to bind to primary or secondary axis. Use
XAxisBinding, YAxisBinding and ZAxisBinding properties to control that.

212

LightningChart® .NET User’s Manual, rev. 10.5

7.9 PointLineSeries3D

Demo examples: Scatter points; Point lines; Points tracking; Point cloud; Parallel coordinates chart; Multi-
colored 3D point-line

PointLineSeries3D allows presenting points and line in 3D space. For points, there are many basic 3D
shapes available. Points are connected together with a line, if LineVisible property is set true.

Figure 7-20. A PointLineSeries3D example. PointStyle’s Shape is set to Sphere.

7.9.1 Pointstyles

Points can be shown as real 3D points, or as 2D shapes.

Copyright LightningChart Ltd 2009-2023 213

DetailLewvel
[> Rotation3D
4 ShapelD

Angle

Antialiasing

Bitmap Alphalevel
BitmapImage
BitmapimageTintCalor
BodyThickness
BorderColor
BaorderWidth

Color1

Color2

Color3

GradientFil

Height

LinearGradient Direction
Shape

UzelmageSize

Width

ShapedD
ShapeType
[» SizedD

based on other objects visibility.

30

45

True

255

[(none)
] white
3

[128.0.0.0
0

I Red
Il Black
Il E=ck
Edge

13

Down
Cross
True

13

Box

Shape2D

Figure 7-21. PointStyle property tree. ShapeType can be used to switch between 2D and 3D shapes.

Figure 7-22. Red crosses have ShapeType = Shape2D. Teal and Green objects have ShapeType = Shape3D.

Note! 2D shapes are rendered on top of all 3D objects and they don't have any support for hiding them

214

LightningChart® .NET User’s Manual, rev. 10.5

7.9.2 Line styles

LineStyle

AntiAliasing MNormmal
Calor [Yellow
LineOptimization Haidine
Pattemn Solid
PattemScale 1

Width 0.2

Figure 7-23. LineStyle properties.

The lines can be rendered as shaded 3D lines or as a one pixel wide hair line.

When having a lot of data in the series, setting LineOptimization = Hairline is recommended to
avoid performance issues.

e

e

Figure 7-24. Yellow line: LineStyle.LineOptimization = Hairline. Red Line: LineStyle.LineOptimization =
NormalWithShading.

In addition to LineStyle settings, PointLineSeries3D has ClosedLine -property which when enabled,
automatically connects the first and the last data points of the series. This property is available
from LightningChart version 9.0 onwards.

// Connecting the first and the last points
pointLineSeries3D.ClosedLine = true;

For optimizing semi-transparent lines, see chapter 7.10.9.

7.9.3 Adding points

PointLineSeries3D supports three different point formats:

e Points property (SeriesPoint3D array)
e PointsCompact property (SeriesPointCompact3D array)
e PointsCompactColored property (SeriesPointCompactColored3D array)

Copyright LightningChart Ltd 2009-2023 215

PointsCompact and PointsCompactColored structures are very memory efficient, allowing up to 100
million data points visualization with simple point styles. Set the point format via PointsType property.

7.9.3.1 Points

By using Points property, all the advanced coloring options of points are supported. SeriesPoint3D structure
consists of the following fields:

double X: X axis value
double Y: Y axis value
double Z: Z axis value
Color color: individual data point color, only applies when IndividualPointColors is

enabled, or MultiColorLine is enabled.

float sizeFactor: size factor multiplies the size defined by PointStyle.Size. Only applies when
using IndividualPointSizes is enabled.

object Tag: freely assignable auxiliary object, for example to attach some details.

Series points must be added in code. Use AddPoints(...) method to add points to the end of existing

points.

SeriesPoint3D[] pointsArray = new SeriesPoint3D [3];
pointsArray [0] = new SeriesPoint3D (50, 50, 50);
pointsArray [l] = new SeriesPoint3D (30, 50, 20);
pointsArray [2] = new SeriesPoint3D (80, 50, 80);

chart.View3D.PointLineSeries3D[0] .AddPoints (pointsArray); //Add points to the
end

To set whole series data at once while overwriting old points, assign the new point array directly:

chart.View3D.PointLineSeries[0].Points = pointsArray; //Assign the points
array

7.9.3.2 PointsCompact

PointsCompact property enables low memory consumption, which is important when having a lot of
data points.

SeriesPointCompact3D structure consists of the following fields:

float X: X axis value
float Y: Y axis value
float Z: 7 axis value

216 LightningChart® .NET User’s Manual, rev. 10.5

SeriesPointCompact3D[] pointsArray = new SeriesPointCompact3D[3];
pointsArray [0] = new SeriesPointCompact3D (50, 50, 50);
pointsArray [l] = new SeriesPointCompact3D(30, 50, 20);
pointsArray [2] = new SeriesPointCompact3D(80, 50, 80);

chart.View3D.PointLineSeries3D[0] .AddPoints (pointsArray); //Add points to the
end

To set whole series data at once while overwriting old points, assign the new point array directly:

chart.View3D.PointLineSeries[0].PointsCompact = pointsArray; //Assign the
points array

7.9.3.3 PointsCompactColored

PointsCompactColored property enables low memory consumption, important when having a lot of
data points, but still allows coloring the points with individual colors.

SeriesPointCompactColoured3D structure consists of the following fields:

float X: X axis value
float Y: Y axis value
float Z: 7 axis value
int Color: Color of the point

SeriesPointCompactColored3D[] pointsArray = new
SeriesPointCompactColored3D[3];
pointsArray [0] = new SeriesPointCompactColored3D (50, 50, 50,

Color.Blue.ToArgb ())

pointsArray [1] = new SeriesPointCompactColored3D (30, 50, 20,
Color.Red.ToArgb()) ;

pointsArray [2] = new SeriesPointCompactColored3D (80, 50, 80,
Color.Green.ToArgb());

chart.View3D.PointLineSeries3D[0] .AddPoints (pointsArray); //Add points to the
end

To set whole series data at once while overwriting old points, assign the new point array directly:

chart.View3D.PointLineSeries[0].PointsCompactColored = pointsArray; //Assign
the points array

Copyright LightningChart Ltd 2009-2023 217

7.9.4 Coloring points individually

By setting IndividualPointColors = True, the color fields of points apply instead of Material.DiffuseColor.

Figure 7-25. IndividualPointColors in use.

Note! Individual point coloring is not supported when having PointsType = PointsCompact.

7.9.5 Setting points sizes individually

By setting IndividualPointSizes = True, sizeFactor fields from the points take effect. The factor multiplies
the size defined in PointStyle.Size.

Figure 7-26. IndividualPointSizes in use.

Note! Individual point sizes are not supported when having PointsType = PointsCompact, or
PointsCompactColored.

218 LightningChart® .NET User’s Manual, rev. 10.5

7.9.6 Multi-coloring line

To color the line with given data point colors, set MultiColorLine = True. The chart interpolates the color
gradients between adjacent points.

Figure 7-27. MultiColorLine enabled.

Note! MultiColorLine is not supported when having PointsType = PointsCompact.

7.9.7 Displaying millions of scatter points
Demo examples: Point cloud

To be able to show a very high count of scatter points, set PointsOptimization = Pixels. Then each series
point will be rendered as a single pixel. When having to show 10 million or 100 million data points, use

the PointsCompact (see 7.9.3.2) or PointsCompactColored (see 7.9.3.3) approach to keep memory
requirements functional.

Figure 7-28. Millions of scatter points. LineVisible = False, PointsVisible = True, PointsOptimization = Pixels.

Copyright LightningChart Ltd 2009-2023 219

Figure 7-29. IndividualPointsColoring = True, using PointsCompactColored, LineVisible = False, PointsVisible = True. 120
million of scatter points.

Millions of data points can be most efficiently visualized with rectangles. When using
PointsCompactColored or PointsCompact, the point size can be controlled with
PointStyle.Shape2D.Width and PointStyle.Shape2D.Height.

Figure 7-30. PointStyle.Shape2D.Width = 20 and PointStyle.Shape2D.Height = 10.

220 LightningChart® .NET User’s Manual, rev. 10.5

7.10 SurfaceGridSeries3D

Demo examples: Simple 3D surface grid; Surface grid, flat projections; Surface grid, value coloring; Surface
grids, water and ground

SurfaceGridSeries3D allows visualizing data as a 3D surface. In SurfaceGridSeries3D, nodes are equally
spaced in X dimension, and in Z dimension as well.

Figure 7-31. Surface grid series with default style. Height data is made with a sine formula. Legend box shows the height
coloring intervals.

colo coll col2 col3 col4
RangeMaxZ — row6
rows
row4
row3
row2
rowl
RangeMinZ —> row0
T
RangeMinX RangeMaxX

Figure 7-32. Surface grid nodes. SizeX = 5, SizeZ = 7.

Copyright LightningChart Ltd 2009-2023 221

Node distances are automatically calculated as

RangeMaxX — RangeMinX
SizeX -1

node distance X =

RangeMaxZ — RangeMinZ
SizeZ — 1

node distance Z =

7.10.1 Setting surface grid data

e SetXrange by using RangeMinX and RangeMaxX properties, to order the minimum and maximum value
based on assigned X axis.

e SetZrange by using RangeMinZ and RangeMaxZ properties, to order the minimum and maximum value
based on assigned Z axis.

e Set SizeX and SizeZ properties to give the grid a size as columns and rows.

e Set Y values for all nodes:

Method, with Data array index

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodelIndexX ++)
{
for (int nodeIndexZ = 0; nodeIndexZ < rowCount; nodeIndexZ ++)
{
Y =//some height value.
gridSeries.Data[iNodeX, iNodeZ].Y = Y;
}
}

gridSeries.InvalidateData(); // Notify to refresh when the new values are ready

Alternative method, using SetDataValue

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodelIndexX ++)
{
for (int nodelIndexZ = 0; nodelIndexZ < rowCount; nodelIndex?Z ++)
{
Y =//some height value
gridSeries.SetDataValue (nodeIndexX, nodeIndexX,
0, //X value 1is irrelevant in grid
Y,
0,//7 value is irrelevant in grid
Color.Green); //Source point colors are not used in this
example, so use any color here
}
}

gridSeries.InvalidateData(); // Notify to refresh when the new values are ready

222 LightningChart® .NET User’s Manual, rev. 10.5

7.10.2 Creating surface from bitmap file

Demo examples: Large surface

Surfaces can be created from bitmap images by using SetHeightDataFromBitmap method. The
surface gets the size of the bitmap (if no anti-aliasing or resampling is used). For each bitmap image
pixel, Red, Green and Blue values are summed. The greater the sum, the higher will be the height
data value for that node. Black and dark colors get lower values while bright and white colors get
higher values.

Figure 7-33. Source bitmap and calculated surface height data. Dark values stay low while bright values get higher in the
surface.

7.10.3 Fill styles

Use Fill property to select the filling style of the surface. The following options are available:

e None: By using this, no filling is applied. This selection is useful with wireframe meshes.

e FromSurfacePoints: The colors of the Data property nodes are used.

e Toned: ToneColor applies

e PalettedByY: Coloring by Y values by palette, see chapter 7.10.4.

e PalettedByValue: Coloring by SurfacePoint's Value fields by palette, see chapter 7.10.4.

e Bitmap: Bitmap image is stretched to cover the whole surface. Set the bitmap image in

BitmapfFill property. BitmapFill property has sub-properties to mirror the image vertically and
horizontally.

Copyright LightningChart Ltd 2009-2023 223

Figure 7-34. FromSurfacePoints fill. Color per data point. Figure 7-35. Toned fill.

Figure 7-36. PalettedByY Figure 7-37. Bitmap fill.

Figure 7-38. PalettedByValue.

224 LightningChart® .NET User’s Manual, rev. 10.5

7.10.4 Contour palette

ContourPalette property allows defining color steps for height coloring. ContourPalette can be used for:

e Fill (see chapter 7.10.3)
e Wireframe mesh (see chapter 7.10.5)
e Contour lines (see chapter 7.10.6)

An unlimited count of steps can be defined for contour palette. Each step has a height value and a
corresponding color.

The palette includes MinValue, Type and Steps properties. For Type, there are two choices: Uniform and
Gradient. The contour palette of figure 7-39 shows:

e MinValue: 0
e Type: Gradient
o Steps:
e Steps[0]: MaxValue: 25, Color: Red
e Steps[1]: MaxValue: 50, Color: Blue
e Steps[2]: MaxValue: 75, Color: Lime
e Steps[3]: MaxValue: 100, Color: White

The height values below first step value are colored with first step’s color.

Surface grid

1000

Figure 7-39. Surface grid series contour palette Type is set to Gradient.

Copyright LightningChart Ltd 2009-2023 225

7.10.5 Wireframe mesh

Use WireframeType to select the wireframe style. The options are:

e None: no wireframe

e Wireframe: a solid color wireframe. Use WireframelLineType.Color to set the color.

o WireframePalettedByY: wireframe coloring follows SurfacePoint's Y field ContourPalette (see
chapter 7.10.4).

o WireframePalettedByValue: wireframe coloring follows SurfacePoint's Value field,
ContourPalette (see chapter 7.10.4).

e WireframeSourcePointColored: wireframe coloring follows the color of the surface nodes

e Dots: wireframe lines consist of solid color dots.

e DotsPalettedByY: wireframe lines consist of dots colored by ContourPalette according to Y field
of SurfacePoints.

e DotsPalettedByValue: wireframe lines consist of dots colored by ContourPalette according to
Value field of SurfacePoints.

e DotsSourcePointColored: wireframe lines consist of dots whose coloring follows the color of the
surface nodes.

Wireframe line style (color, width, pattern) can be edited via WireframelineStyle.

Note! Palette colored wireframe lines and dots may conflict with WireframelLineStyle.Pattern
settings, for example Dash linestyle with wireframe set to Dots. Use solid line in one or the other.

Figure 7-40. WireframeType = Wireframe. Figure 7-41. WireframeType = WireframePalettedByY.

226 LightningChart® .NET User’s Manual, rev. 10.5

Figure 7-44. WireframeType = DotsPalettedByY. Figure 7-45. WireframeType = DotsSourcePointColored.

Copyright LightningChart Ltd 2009-2023 227

7.10.5.1 Some notes when using wireframe simultaneously with fill

When fill and wireframe are drawn in the same position in 3D model, Z-fighting may appear. It can
be seen as broken wireframe lines. That is because it is impossible for the GPU to determine which

object is closer to camera.

|

Figure 7-46. Surface grid wireframe with filling. Z-fighting appears as broken wireframe lines.

To prevent Z-fighting from occurring, use WireframeOffset or DrawWireframeThrough property. By
using WireframeOffset, the wireframe is moved slightly in 3D model space. DrawWireframeThrough
draws the wireframe through the filling, whether or not the part of the surface is visible to the
camera.

Figure 7-47. WireframeOffset = (X=0; Y=0.1; Z=0). Figure 7-48. DrawWireframeThrough is enabled.

228 LightningChart® .NET User’s Manual, rev. 10.5

7.10.6 Contour lines

Contour lines allow quick interpretation of height data without filling the surface with paletted fill. Contour
lines can be used combined with fill and wireframe. By setting ContourLineType property, contour lines can
be drawn with different styles:

e None: no contour lines are shown

e FastColorZones: The lines are drawn as thin vertical zones. Allows very powerful rendering, which suits
well for continuously updated or animated surface. Steep height changes are shown as thin line, as gently
sloping height differences are shown with thick line. All lines use the same color defined with
ContourlineStyle.Color property. The zone height can be set by FastContourZoneRange property.

e FastPalettedZones: Like FastColorZones, but line coloring follows ContourPalette options (see chapter
7.10.4).

e ColorLineByY and ColorLineByValue: Contour lines are made with actual lines. Rendering takes longer
than FastColorZones. The line width can be adjusted with ContourlLineStyle.Width property. Contour
lines can alos be shifted with WireframeOffset property, to remove possible Z-fighting with filling.

e PalettedLineByY and PalettedLineByValue: Like ColorLineByY and ColorLineByValue, but line coloring
follows ContourPalette options (see chapter 7.10.4).

Figure 7-51. ContourlLineType = ColorLine. Figure 7-52. ContourlLineType = PalettedLine.

Copyright LightningChart Ltd 2009-2023 229

Figure 7-53. ContourLineType = PalettedLineByValue.

7.10.7 Fadeaway

Demo examples: Spectrum 3D

SurfaceGridSeries3D, SurfaceMeshSeries3D and WaterfallSeries3D have a FadeAway property, which
allows fading away the series towards the back of the chart. Fadeaway is measured in percents, valid range
being from 0 (no fadeaway, the default value) to 100 (full fadeaway). The higher the value, the more
transparent the data with high Z value will become.

7.10.8 Scrolling surface data

Demo examples: Spectrogram

SurfaceGridSeries3D and SurfaceMeshSeries3D have InsertRowBackAndScroll and
InsertColumnBackAndScroll methods for performance optimized periodical data adding. They insert a new
data row or column into the surface series’ data table while dropping the oldest values i.e. the first data row
off. Consider the following 3D spectrum display (Figure 6-54). New FFT values are added as a new row (close
to camera), and the old data and the time axis (Z axis) must be scrolled. The oldest surface values must be
dropped off.

InsertRowBackAndScroll and InsertColumnBackAndScroll take the new data as a double array, but also
require new minimum and maximum values for both surface series and the scrolled axis (Z dimension/axis
for InsertRowBackAndScroll and X dimension/axis for InsertColumnBackAndScroll). This constant adjusting
of series and axis ranges enables the scrolling effect.

230 LightningChart® .NET User’s Manual, rev. 10.5

Power spectrum P(f)
Channel 1

4000 -4

2000
4000
requency (Hz)

10000

Figure 7-54. Presenting 3D spectrum with surface grid. InsertRowBackAndScroll method is used for performance optimized data
adding. Fadeaway property is 100 to make the surface smoothly fade away towards the back of the chart. A perspective camera
is used.

Power spectrogram P(f)

[T T

0,0 1500,0 5000,0

L1500

-
=
®

ie]
s
o
>
~

~

=
=
N

~—

00:15 = 00:18 00:19
Time

Figure 7-55. A spectrogram with surface grid. InsertColumnBackAndScroll method is used. An orthographic camera above the
model gives straight and perpendicular projection. SuppressLighting is enabled to remove unwanted light reflections. Fadeaway =
0 for making the grid series fully visible.

Copyright LightningChart Ltd 2009-2023 231

7.10.9 Handling transparency

While rendering opaque surface is straightforward, things get a bit more complicated with semi-
transparent or transparent surfaces as they should allow seeing other 3D-series and objects as well as
data points behind them. LightningChart offers 3 options for handling transparency of the surface:
Unordered, ShaderApproximation and OrderingTriangles, each with their advantages and
disadvantages. TransparencyRenderMode property can be used to select this.

Unordered - Renders transparent object faces in the order they are created. This is good for all non-
transparent surfaces and identical to the old library behavior. For translucent surfaces it may work
under certain view angles, but could be completely opaque from other angles, or alternatively light
effect on surface may appear incorrect (artifacts may be seen).

ShaderApproximation - Uses shader for transparency effect. This approach is almost as fast as
Unordered, but partial transparency is handled correctly between multiple surfaces or on the same
surface. The drawback is that surface edge is less smooth (more ragged/aliased) compared to
Unordered or OrderingTriangles options. If chart has both surface and PointLineSeries3D object, then
ShaderApproximation mode should be set for both types of object for consistency.

OrderingTriangles - Orders object face triangles in proper z-order. This would be slow on items with
large number of faces (1 million or more). It also doesn’t work with multiple surfaces (viewing angle
should match multiple surface order).

TransparencyRenderMode is available for surface type 3D-series (SurfaceGridSeries3D,
SurfaceMeshSeries3D and WaterfallSeries3D), as well as for PointLineSeries3D. Note that this property
is available only when DirectX 11 renderer is used, in other words when RendererDeviceType is either
HardwareOnlyD11 or SoftwareOnlyD11.

Figure 7-56. Semi-transparent SurfaceMeshSeries3D wrapped as a tube on the left. On the right, Several
SurfaceGridSeries3D with top one having transparent fill using ShaderApproximation.

232 LightningChart® .NET User’s Manual, rev. 10.5

M Point line series

Figure 7-57. On the left, two WaterfallSeries3D with the one in front having transparent fill using ShaderApproximation. On
the right, semi-transparent PointLineSeries3D coiled as a spring.

7.11 SurfaceMeshSeries3D

Demo examples: Surface mesh, heat dissipation; Surface mesh; Stepping surface mesh; Globe with flight
routes; Gradient bars

SurfaceMeshSeries3D is almost similar to SurfaceGridSeries3D as they both mostly have the same
properties. The biggest difference is that surface nodes can be positioned freely in 3D space. In other
words, the surface does not have to be rectangular. SurfaceMeshSeries3D allows warping the surface
virtually to any shape, for example to a sphere or a human head.

Figure 7-58. SurfaceMeshSeries3D, geometry made as a pipe.

Copyright LightningChart Ltd 2009-2023 233

col0 coll col2 col3

row3

row?2

rowl

row0

Figure 7-59. Surface mesh nodes. SizeX = 4, SizeZ =4.

7.11.1 Setting surface mesh data

e Set SizeX and SizeZ properties to give the grid a size as columns and rows.
e SetX, Y and Z values for all nodes:

Method, with Data array index

for (int nodeIndexX = 0; nodelIndexX < columnCount; nodelIndexX ++)
{
for (int nodeIndexZ = 0; nodeIndexZ < rowCount; nodeIndexZ ++)
{
meshSeries.Data
meshSeries.Data
meshSeries.Data
meshSeries.Data

.Y = xValue;
.Y = yValue;
.2 = zValue;
.Value = dataValue;

nodeIndexX, nodelndexZ
nodelIndexX, nodelndexZ
nodelIndexX, nodelndexZ
nodeIndexX, nodelndexZ

— — — —
[N I S "

}
}

meshSeries.InvalidateData(); // Notify when new values are ready to refresh

Alternative method, usage of SetDataValue

for (int nodeIndexX = 0; nodeIndexX < columnCount; nodeIndexX ++)
{
for (int nodeIndexZ = 0; nodeIndexZ < rowCount; nodelIndexZ ++)
{
meshSeries.SetDataValue (nodeIndexX, nodelIndex?Z,
xValue,
yValue,
zValue,
dataValue,
Color.Green); // Source point colors are not used in this
example, so use any color here
}
}

meshSeries.InvalidateData(); // Notify when new values are ready to refresh

234 LightningChart® .NET User’s Manual, rev. 10.5

7.12 WaterfallSeries3D

Demo examples: Waterfall 3D

With WaterfallSeries3D, the data is visualized in area strips. Areas can be filled, wire-framed and
contour-lined like SurfaceGridSeries3D, see chapter 7.10. In Y-dimension, area starts from Baselevel
property value. The node data can be set like in SurfaceMeshSeries3D, see chapter 7.11.1.

e
Primary X

Figure 7-60. Two waterfall series. On the left violet series, X and Z are in rectangular form. BaseLevel = 10. On the right red-
green-blue series, X and Z values are bent, and each row is placed in different horizontal location

WaterfallSeries3D is especially handy for presenting traditional 3D spectrum.

S

v
v
v
-
il
hi
-
-
-
-
-
Y
h
-
)
-
-
-

41< TRAL VLAY

< "‘ <1

Figure 7-61. Waterfall series used for traditional spectrum presentation.

Copyright LightningChart Ltd 2009-2023 235

7.13 BarSeries3D

Demo examples: Horizontal bars; Bars, grouping; Bars, manhattan

BarSeries3D allows bar data visualization in 3D.

7.13.1 Bars grouping

Bar series can be grouped with many options available in BarViewOptions property of View3D.
BarViewOptions.ViewGrouping controls how the bars are grouped in the 3D view.

Figure 7-62. BarViewOptions.ViewGrouping = GroupedindexedFitWidth. Bars are grouped according to their index. Bar
widths and group gaps are arranged to fit the width nicely.

Figure 7-63. BarViewOptions.ViewGrouping = Groupedindexed. Original bar widths apply, and groups are arranged to fit
the chart width.

236 LightningChart® .NET User’s Manual, rev. 10.5

Figure 7-65. BarViewOptions.ViewGrouping = Stackedindexed. All bars having same index are stacked.

Figure 7-66. BarViewOptions.ViewGrouping = StackedByXValue. All bars having same X value are stacked. This example
looks same than with StackedIndexed, as the X values and indices are same.

Copyright LightningChart Ltd 2009-2023 237

w
8
o

N
2
©

26,0

°©
~N

o 9 s o © =)] &
3 S 5 3 S S o 5
l'-——-———--_---
| e ———
o I
[rm—————— = |

w

Figure 7-67. BarViewOptions.ViewGrouping = StackedStretchedToSum. All bars having same X value are stacked and
stretched to StackSum, in this case 25.

Figure 7-68. BarViewOptions.ViewGrouping = Manhattan. The first series values are shown nearest to the camera and
the last series farthest. Bar X values control the bar position in X dimension.

238 LightningChart® .NET User’s Manual, rev. 10.5

7.13.2 Bar styles

BarSeries3D has Shape property for controlling the bar shape. In addition, with some shapes,
CornerPercentage can be used to change corner rounding and DetailLevel to change the visual
quality.

2010

Figure 7-69. Bar shapes: Simple, Cylinder and RoundedCylinder.

2010

Figure 7-70. Bar shapes: Cone, ReversedCone and Pyramid.

Copyright LightningChart Ltd 2009-2023 239

2010

Figure 7-71. Bar shapes: ReversedPyramid, Ellipsoid and Beveled.

7.13.3 Setting bar series data

Bar series data can be added as BarSeriesValue3D -structures, which contains x, y, z and text fields.

// create new values array

BarSeriesValue3D[] values = new BarSeriesValue3D[3];
values[0] = new BarSeriesValue3D(20, 45, 5, “7);
values[l] = new BarSeriesValue3D(30, 50, 5, “);
values[2] = new BarSeriesValue3D(40, 35, 5, “);

// add values to series
chart.View3D.BarSeries3D[0] .AddValues (values, false);

240 LightningChart® .NET User’s Manual, rev. 10.5

7.13.4 Showing bars horizontally

Bars are drawn in Y axis direction. To show the bars vertically, rotate the camera 90 degrees.

Figure 7-72. Vertical bars view on the left, horizontal bars view on the right.

The code setting up the vertical bars view of the previous figure:

chart.BeginUpdate () ;

chart.View3D.Dimensions.Y = 100;

chart.View3D.Dimensions.X = 150;
chart.View3D.YAxisPrimary3D.Location = AxisYLocation3D.FrontLeft;
chart.View3D.Camera.RotationX = 0;
chart.View3D.Camera.RotationY = 0;
chart.View3D.Camera.Rotationz = 0;
chart.View3D.Camera.ViewDistance =
chart.EndUpdate () ;

170;

The code setting up the horizontal bars view of the previous figure:

chart.BeginUpdate () ;

chart.View3D.Dimensions.Y = 150;

chart.View3D.Dimensions.X = 100;
chart.View3D.YAxisPrimary3D.Location = AxisYLocation3D.FrontRight;
chart.View3D.Camera.RotationX = 0;

chart.View3D.Camera.RotationY = 0;

chart.View3D.Camera.RotationZ = 90;
chart.View3D.Camera.ViewDistance = 170;

chart.EndUpdate () ;

Copyright LightningChart Ltd 2009-2023 241

7.14 MeshModels

Demo examples: Vessels with sea depth; Mesh models coloring, wireframe; Mesh models realtime
coloring; Mesh models by code

MeshModels list property allows inserting 3D models from external 3D model editors into LightningChart
View3D. The models can be imported in OBJ format, which is a generic format in 3D modeling
applications and game engines.

Note! LightningChart v.7 onwards does not support Direct3D X-format files (*.x) anymore, since
DirectX 11 does not support it.

Figure 7-73. Battleship and submarine models loaded in View3D, over SurfaceGridSeries3D visualizing seabed depth data.

242 LightningChart® .NET User’s Manual, rev. 10.5

7.14.1 Loading a model

e To load a model from file, set the path and file name into ModelFileName property, or use
LoadFromFile method. When loading the model from file, texture fills are loaded as well, if they
exist in the same path, and MTL file and image files are accessible.

e Starting from LightningChart version 8.5, MeshModel creation supports colors for vertices in
.obj -file. Vertex positions support Red, Green, Blue and Alpha values after x, y and z (XYZRGBA).

e To load model from stream, use LoadFromStream method. The stream reading method only
reads geometry and materials, but not textures.

e To load model from a resource, use LoadFromResource method.

7.14.2 Positioning, scaling and rotating the model

A MeshModel object Position follows the X, Y and Z axes it has been assigned to. The model can be
rotated by editing Rotation property. Size can be defined with Size property, which is a collection of
factors for original model size and does not follow axis ranges or 3D world dimensions.

7.14.3 Enabling fill and wireframe

e To show fill, set Fill = True

o To show wireframe, set WireFrame = True, and set preferred line color in WireFramelLineColor.

Figure 7-74. Airplane shown as wireframe (WireFrameLineColor = Red) and with default gray fill.

Copyright LightningChart Ltd 2009-2023 243

7.14.4 Custom-coloring fill

By default, the model renders with the colors of the OBJ model. To apply custom coloring for
model’s vertices, use UpdateFillColors(int[] colors) method. This method can also be called
periodically, to apply real-time color updates. UpdateFillColors requires an ARGB colors array that
is equal length of vertex positions (X.Length). One color for each vertex.

GeometryConstructed event reports position of vertices in axis values space, as X, Y and Z arrays.
They are especially needed when applying coloring e.g. by spatial distance of other chart objects,
such as data points. Subscribe to GeometryConstructed event handler in the initialization phase,

and then unsubscribe when not needed anymore.

Intensity

60.0

Figure 7-75. MeshModel colored by spatial distance utilizing UpdateFillColors method.

Note: ChartTools.ConvertDataToColorsByFixedintervalPalette method can be utilized to convert
data values into colors (ARGB int) by given palette steps.

244 LightningChart® .NET User’s Manual, rev. 10.5

7.14.5 Custom-coloring wireframe

Wireframe can also be colored with custom colors. Use GeometryConstructed event handler to get the
required colors array length and UpdateWireframeColors method to apply the new colors.

Figure 7-76. MeshModel wireframe colored by spatial distance utilizing UpdateWireframeColors method.

7.14.6 Reverse vertices winding order

Some models are made with reverse winding order and therefore culling makes them invisible. If the
model does not show up correctly, change Cull setting between Clockwise, CounterClockwise and None.

meshModel.Cull = Cull.CounterClockwise;

7.14.7 Shade mode

It is possible to control whether lights affect MeshModel colors or not. By setting ShadeMode property
to Flat, lighting has no effect on the model. By default, ShadeMode is set to Gouraud (lighting affects

the model).

model.ShadeMode = ShadeMode.Flat;

Note that disabling lighting effects causes the model to lose some of its depth perception.

Copyright LightningChart Ltd 2009-2023 245

7.14.8 MeshModel rendering order

RenderingOrder -property was introduced in LightningChart version 8.5. It controls whether a
MeshModel is rendered before other series, such as PointLineSeries3D and SurfaceGridSeries3D
(BeforeSeries), or after them (AfterSeries). MeshModels with similar RenderingOrder -settings are
drawn in the order they are added to the chart.

meshModel.RenderingOrder = MeshModelRenderingOrder.BeforeSeries;

RenderingOrder affects above all semi-transparent MeshModels. Its use is to determine if other series
can be seen through the model. If a MeshModel uses no transparent colors, it blocks everything behind
it from being seen regardless of RenderingOrder -settings.

Figure 7-77. RenderingOrder of a semi-tranparent MeshModel is set to BeforeSeries on the left and to AfterSeries on the right.
With BeforeSeries -option, other series such as PointLineSeries3D cannot be seen through the model even if the model colors are
transparent.

Note that currently Rectangles3D and Polygons3D are not affected by RenderingOrder as they are not
considered series.

7.14.9 Constructing MeshModel programmatically from vertices

Starting from v.8.2, MeshModel supports constructing the MeshModel geometry programmatically. It
allows visualizing objects and shapes that have been produced via computation.

The following Create methods are available:

e Create(positions, colors, indices)

e (Create(positions, colors, normals, indices)

e C(Create(positions, textureCoordinates, bitmap, textureWrapMode, indices)

e (Create(positions, normals, textureCoordinates, bitmap, textureWrapMode, indices)

246

LightningChart® .NET User’s Manual, rev. 10.5

Index array (indices) parameters are optional. If provided, they will define which vertices, colors, light
normals and texture coordinates to use from the arrays given. Using indices saves resources when
same vertices are shared between multiple triangles.

Figure 7-78. MeshModels constructed by code.

The rotation, scaling and positioning properties etc., as well as events, apply also to a MeshModel
created programmatically from vertices, in a similar way than they work for loaded objects.

An alternative way to create MeshModels is to use CreateFromTriangles() method. It creates the
model based on the given arrays of vertices (PointFloat3D[]) and colors (Color[] or int[]), and an
optional array of normal (PointFloat3D[]).

7.14.9.1 Updating the bitmap fill efficiently

When a MeshModel has been created by using Create method, supplying bitmap and texture
coordinates as arguments, it is possible to update the bitmap very efficiently without reconstructing
the geometry. Call UpdateFillBitmap method to update.

Note! UpdateFillBitmap method is not applicable for models loaded from OBI files.

Copyright LightningChart Ltd 2009-2023 247

7.14.10Tracing the model with mouse

MeshModel has triangle-based tracing for mouse position. Use TriangleTraced event, which indicates
the nearest triangle to the camera and the mouse location.

The event arguments have the following info:

e IntersectionPointAxisValues: intersection point of triangle face in axes values

e ModelSpaceTriangleCoordinates: array of 3 triangle corners (vertices) the mouse is hitting in 3D
model space coordinates

o WorldSpaceTriangleCoordinates: array of 3 triangle corners (vertices) the mouse is hitting in 3D
world space coordinates.

e NearestCoordinatelndex: Index of nearest coordinate index of traced triangle, value of 0...2. Use
the index to extract the coordinate from ModelSpaceTriangleCoordinates or
WorldSpaceTriangleCoordinates array.

Axes values: X=10.5; Y=5.1; Z=-13.7.
World Space: X=9.8; Y=4.6; Z=-10.5.
Model Space: X=0.1; Y=0.0; Z=-0.6.

Figure 7-79. Tracing MeshModels with mouse. Traced result is shown in an Annotation.

248 LightningChart® .NET User’s Manual, rev. 10.5

7.15 VolumeModels

Demo examples: Volume head; Volume flow; Volume geo,; Volume skeleton; Volume wave interference

VolumeModels is a tool for volume data visualisation via Direct Volume Rendering. VolumeModel takes
the volume data inside and visualizes it. LightningChart’s volume rendering engine is based on the
Volume Ray Casting.

An image is produced by the algorithm via the volume data sampling along the tracks of the rays which
travel inside the dataset. A simple realization of hardware acceleration for Volume Ray Casting requires
generating boundaries for a volume object. Usually, they are represented by a cube. High rendering
quality without artefacts, and usage of the interchangeable ray function are the main advantages of
this technology.

RayFunction is the core of the algorithm providing it with a very high level of flexibility. The technique
is powerful because it specifies the way how the data is sampled and combined. This makes it a very
useful tool for a feature extraction.

Note! VolumeModels are available only when DirectX 11 renderer is used.

7.15.1 Loading data

There are several ways how the data can be imported to the VolumeModel.

e Data can be supplied to Data property as a collection of images which represent slices of the
dataset

e Data can be supplied directly to the constructor of the VolumeModel in various ways

e Data can be supplied to the VolumeModel via one of the load functions

Load functions and constructors allow supplying data as a collection of slices (similarly to Data
property) or as a string with a path to the folder with the slices (as .Net supported image extension).
The data can also be provided as a texture map created by our tool. A texture map consists of slices,
but its supplement also needs an additional information about the number of slices on the picture. This
is required for efficient usage of GPU input buffers. Texture maps can be created via
ChartTools.CreateMap function. Direct input of texture map is used to speed up the start of an
application for a very big dataset.

7.15.2 Properties

VolumeModel contains typical properties of a 3D object in LightningChart, for example Visible,
Rotation, Size, Position, AllowUserinteraction, and HighLight. In addition, the object has specific
properties, which define how Volume Rendering engine handles it.

Copyright LightningChart Ltd 2009-2023 249

Brightness
B
G
R
Darkness
B
G
R
EmptySpaceSkipping
MaouseHighlight
Mousenteraction
Opacity
Position
X
Y
z
RayFunction
Rotation
X
Y
Z
SamplingRateCptions
Enabled
Inerthness
Manual SamplingRate
SamplingRateRange
TargetFPS
Size
Depth
Height
Width
SliceRange
W Max

Smoothness
Threshold
W Max

B

G

R
» Min

B

G

R
Visible
¥ fwisBinding
Y fadsBinding
ZfxisBinding

Figure 7-80. Property tree of VolumeModels

10
10
10

07

07

0.7

128

Simple

True
0.15000000596046448

Accumulation
270

180

False

512

15

100

100

0.7
0.8

0.3
0.2

0.5
0.5
0.5
True
Primany
Primany
Primary

250

LightningChart® .NET User’s Manual, rev. 10.5

7.15.3 Ray Function

RayFunction property allows choosing one of the three ways of voxel sampling and composition
available in LightningChart Volume Rendering Engine:

e RayFunction.Accumulation collects and combines as much data as possible. The visualization
which is produced by this technique looks like a semi-transparent gel. The figure below shows
an example of RayFunction.Accumulation application visualizing a medical dataset.

Figure 7-81. Example of a medical application for the RayFunction.Accumulation

Copyright LightningChart Ltd 2009-2023 251

e RayFunction.Maximalintensity takes into account only the brightest values sampled by the ray.
Visually it provides a very similar result to X-ray images. It allows to get an additional
information about the internal structure of the object. RayFunction.Maximalintensity
applications for skeleton visualization and ultrasound wave’s interference simulation are shown
below.

Figure 7-82. Examples of a Maximum Intensity Ray Function application

e RayFunction.lsosurface draws the model surface in a way that it looks like a polygonal model
rendering. The result is very similar to those produced by Indirect Volume Rendering. Figures
show examples of RayFunction.Isosurface applications for the visualization of human skull CT
and simulation of water flow.

Figure 7-83. Examples of an Isosurface Ray Function application

252 LightningChart® .NET User’s Manual, rev. 10.5

7.15.4 Threshold

The Volume Rendering Engine can apply a threshold range by a property to the VolumeModel.
There is a separate boundary for every colour channel. The voxel is visualized only if the
corresponding color values are lower than the high boundary, and higher than the low boundary at

all the channels. Acceptable areas are invisible. This property is not taken into consideration by the
mouse hit test.

Figure 7-84. Example of two different threshold settings

Copyright LightningChart Ltd 2009-2023 253

7.15.5 Color clipping

Demo examples: Coloring Volume Model

Volume models have ClipColorRange and ColorRangeToClip properties, which like Threshold, can be
used to clip certain colors from the model. However, they work the opposite way. Color clipping
doesn’t render colors within the defined color ranges, whereas Threshold removes colors outside
the range.

ClipColorRange controls whether color clipping is enabled or not. ColorRangeToClip allows setting
the actual color ranges that should be removed. Minimum and maximum clip values can be set via
Min and Max properties for each color channel separately. Alternatively, all values can be modified
simultaneously by giving assigning RangeRGB object to ColorRangeToClip. The clipped values should
be between 0 and 1 where 0 means color value 0 and 1 value 255. After the ranges have been set,
each color combination that is within the defined ranges will be clipped. Clipping takes all color
channels into account simultaneously.

// Enabling color clipping.
_chart.View3D.VolumeModels[0] .ClipColorRange = true;

// Modifying a single channel value.
_chart.vView3D.VolumeModels[0] .ColorRangeToClip.Min.R = 0.1;

// Assigning all clip ranges simultaneously.
_chart.view3D.VolumeModels[0] .ColorRangeToClip =
new RangeRGB (new PointRGB(0, 0, 0), new PointRGB (0.2, 0.2, 0.2));

Figure 7-85. Original Volume Model on the left. On the right, color clipping is used to remove the blue channel.

254 LightningChart® .NET User’s Manual, rev. 10.5

7.15.6 Slice Range

SliceRange property allows cutting away a part of the VolumeModel. It is a very useful tool for the
exploration of the object’s internal structure. SliceRange contains two boundaries, Min and Max,
both of which are represented by three pointing float values.

Figure 7-86. Example of Accumulation Ray Function and SliceRange modification

Copyright LightningChart Ltd 2009-2023 255

7.15.7 Sampling Rate Options

SamplingRate is a very important property to the final image quality. It defines how often the
volume dataset is sampled along the ray’s track. Higher SamplingRate produces better quality but
requires more powerful hardware. SamplingRate influences RayFunction options, especially
Accumulation. Artefacts produced by low sampling rate are less noticeable when using Maximal
Intensity. Furthermore, Isosurface can be too sharp at a very high sampling rate. Usually, the sweet
spot equals the number of voxels on the side which is placed along the ray tracks.

SamplingRateOptions contains several options for SamplingRateManager. SamplingRateManager
is needed to reach the optimal balance between quality and frame rate for a hardware. By default,
SamplingRateManager is turned on by the property Enabled being set true. If set false,
ManualSamplingRate value will be used. SamplingRateRange defines the boundaries for
SamplingRateManager. Inertness specifies how rapid is the reaction of sampling rate in case of
performance changes. TargetFPS is a target value, which sampling rate manager tries to achieve.

Figure 7-87. Example of low sampling rate: 32(left), 64(right)

256

LightningChart® .NET User’s Manual, rev. 10.5

7.15.8 Smoothness

Smoothness property prevents too high detalization of the surface. It smoothens the surface of the
model and reduces some noise and other artefacts.

Figure 7-88. Example of too high sampling rate, fixed by smoothness property

Copyright LightningChart Ltd 2009-2023 257

7.15.9 EmptySpaceSKkipping

EmptySpaceSkipping property defines a resolution of empty space, skipping sampling. A low value
(16-32) of EmptySpaceSkipping improves the performance but can cause artefacts in the model
edges.

Figure 7-89. Example of too low EmptySpaceSkipping property value

258 LightningChart® .NET User’s Manual, rev. 10.5

7.15.100pacity

Opacity specifies the behaviour of Accumulation option of RayFunction. The lower the Opacity, the
more transparent the object will be.

Figure 7-90. Example of Accumulation Ray Function Opacity modification: 15% (left), 45(right)

7.15.11Brightness and Darkness

These properties define the image’s transfer function. Every change has its own transfer function. It is
represented by the linear function: output = Brigthness * input — Darkness

Copyright LightningChart Ltd 2009-2023 259

7.16 Rectangle3D objects

Demo examples: Rectangles/Planes; Surface mouse control; Parallel coordinates chart

Rectangle3D allows presenting a rectangle, turned to any angle, at any size, at any location. They can
be added to View3D.Rectangles list. Rectangles can also act as planes by defining their size according
to View3D.Dimensions.

Set Size in 3D world dimensions (not X, Y or Z axis values) as Width and Height. Set the center point via
Center property, defined in X, Y and Z axis values. Rotation property specifies the rotation in degrees.

Fill settings can be modified via Fill property. Solid color and bitmap fills are available. To use bitmap
fill, set the bitmap in Image, and enable Uselmage. When setting Fill. Layout = Stretch, the bitmap
stretches to fill the rectangle. By setting Fill.Layout = Tile, the same bitmap is tiled to fill the rectangle.
With Fit option the bitmap fills the designated area while maintaining the original aspect ratio. The tile
count can be altered via Fill. TileCountWidth and Fill.TileCountHeight properties.

vi
L
50
5
50
~ Fil
Image AP System.Drawing.Bitmap
ImageAlpha 255
Layout Stretch
w Material

AmbiertColor | Black
DiffuseCalor [150, 50, 50, 50
EmizsiveColor | Black
SpecularColor [Gray
SpecularPower 5

TileCountHeight 10

TileCountWidth 10

|selmage True
MouseHighlight Blink
Mougelnteraction True
“ Rotation
X 0
T 0
Z 0
w Size
Height 100
Width 100
Visible True
*AxisBinding Primary
' AxisBinding Primary
ZhxisBinding Primary

Figure 7-91. Properties of Rectangle3D objects.

260

LightningChart® .NET User’s Manual, rev. 10.5

Figure 7-92. Two Rectangle3D objects in View3D. The bottom blue one shows a bitmap fill with Layout = Tile. The red rotated
rectangle on the top is configured with translucent color.

7.17 Polygon3D objects

Demo examples: 3D polygons; World population

Polygon3D objects allow presenting a 2D polygon stretched to given Y range. They can be added to
View3D.Polygons list.

Define the polygon path in X and Z axis values and store it in Points array. Set the Y range with YMin
and YMax values.

Material.Diffuse controls the main color of the rectangle. Rotate the polygon to another angle with
Rotation.X, Rotation.Y and Rotation.Z in degrees.

Copyright LightningChart Ltd 2009-2023 261

w Materia
AmbientColor Il Black

DiffuseCalar B Magenta
EmissiveColor | Black

SpecularColor [Gray
B

SpecularPower
Mouse Highlight Simple
Mouse Interaction True
Points Polygon3DPoint[] Amay

* Rotation

X 1]

Y 1]

Z 1]
Visible True
¥ fxis Binding Primary
't Axis Binding Primary
YMax 20
YMin 1]
ZhxisBinding Primary

Figure 7-93. Properties of Polygon3D objects.

Figure 7-94. A 6-point polygon ranging from YMin = 0, YMax = 15.

262 LightningChart® .NET User’s Manual, rev. 10.5

—-4-_,->+_7__‘ Population

500000000

Figure 7-95. World population shown with Polygon3D objects. A Polygon3D object is drawn based on each region of map
data. The amount of population of a country is used to color the polygon and to set its YMax. China and India are shown with
translucent colors because of their high population.

7.18 Data cursor

Starting from version 10.5, View3D has a built-in data cursor, which automatically tracks the closest series
value to the mouse cursor and shows it in a result table. The cursor consists of hair cross lines for all three
axes, a tracking point at the location of the closest data value, indicators showing the current values on
axis scales, and the result table, which besides the axis values also shows the series name and its color.

Data cursor can be enabled or disabled via Visible property. It is also possible to hide some of the cursor
components such as the lines or the indicators labels for the axes individually by setting
ShowHaircrossLines or ShowlLabels, or other respective “Show” properties based on what should be
hidden, false. The appearance of the cursor can also be modified via component specific properties.
IndicatorLength and IndicatorWidth modify the axis indicators, TrackingPointStyle allows altering the
tracking point while LineStyle changes the hair cross lines. Results property contains all the options to
modify the result table.

// Enables data cursor but hides its axis indicator labels.
_chart.View3D.DataCursor.Visible = true;
_chart.View3D.DataCursor.ShowLabels = false;

Copyright LightningChart Ltd 2009-2023 263

// Modifying the result table.
_chart.View3D.DataCursor.ShowResultTable = true;
_chart.vView3D.DataCursor.Results.Background.Color = Colors.DarkBlue;

Data cursor changes its behaviour depending on whether the tracked series has a visible line or just
visible data points (scatter plot). If the line is visible, the cursor finds the nearest series and its value to
the cursor’s current position. If there are no lines visible, the cursor tracks the nearest data point in any
direction. Enabling SnapToNearestDataPoint overrides this making the cursor always finding the
nearest actual data point value in any direction.

Data cursor works with every View3D series and object except for Rectangle3D and VolumeModels.

w DataCursar

IndicatarLength 5
Indicatoriidth 25
LabelFont Segoe Ul, 12pt
Labellndicatorlnside True
LineStyle
Real Time Tracking False
~ Results
Background
Border
DataRowFort Segoe Ul, 12pt
Padding 2.2 2 2
Rotate Angle 0
TextColor [] White
TitleFart Segoe Ul, 14pt
|UseSeres TitleColor | False
ShowColorindicator True
ShowHaircrossLines True
ShowlLabels True
ShowResult Table True
ShowTag False

Show Tracking Point True
Snap ToMearest DataFoir| False

strTag Tag
TrackingPoint Style

Track Series True
Track SeresPixel Toleran| 20
Wisible False

Figure 7-96. The property tree of the data cursor.

264 LightningChart® .NET User’s Manual, rev. 10.5

Figure 7-97. Data cursor with PointLineSeries3D and SurfaceMesh3D series.

7.19 Zooming, panning and rotating

ZoomPanOptions properties can be used to control the zooming, panning and rotation settings.

ZoomPanOptions

AllowWheel Zoom True

AuttaFit False

AuisWheel Action Pan

Box oomingOutCrossVisible True

BoxZoomOut Factor 2 MNane
DevicePrimaryButtonAction Rotate Pan
DevicePrimanyButton DoubleClick Action ZoomToDataAndlLabelsArea Rotate
Device SecondaryButtan Action Pan PanPrimary <
Device TeriaryButton Action Pan PanPrimary XY
Limit Box Zoom InsideGraph True PanPrimaryYZ
Mutti TouchPanEnabled True ZoomXY
MultiTouchZoomEnabled True ZoomXZ
PanSensitivity 1 ZoomYZ
Rectangle Zooming Threshold ZoomX

Right To Left Zoom Action FZoomOut 22$;
Ruotation Sensitivity 1

WheelAreaThickness 2

WheelZoomFactor 1.1

ZoomBoxColor [] 30. 255, 165. 0

ZoomInBoxLine Style

ZoomOut BoxLineStyle

ZoomPadding 30, 30, 30, 30

Figure 7-98. ZoomPanOptions properties and sub-properties, with DevicePrimaryButton / DeviceTertiaryButtonAction /
DeviceSecondaryButtonAction options on the right.

Copyright LightningChart Ltd 2009-2023 265

Depending on the settings, zooming can be performed with mouse wheel, by touch screen
pinching/spreading, or by painting a box on selected 3D plane. Panning, box zooming, and rotating can
all be performed by left, middle or right mouse button, as they are configurable. Panning can be made
for the whole 3D chart, or so that primary axes are adjusted while keeping the 3D scene location the
same.

7.19.1 Mouse wheel zooming

Scroll mouse wheel up to zoom in, and down to zoom out. Use WheelZoomFactor to adjust the amount
of applied zoom with every mouse wheel event. To disable mouse wheel zooming, set AllowWheelZoom
to false. By default, this is set true.

7.19.2 Box zooming

To enable box zooming, assign the box zooming to a mouse button action property. For example,
DevicePrimaryButtonAction = ZoomXZ causes the box zoom to apply to XZ plane. Y dimension is not
affected. Set ZoomXZ or ZoomYZ respectively for zooming other planes.

Figure 7-99. On the left, XZ-plane box zooming in progress. On the right, the outcome of the zooming. X and Z axis ranges
are modified while Y axis range stays the same.

Zoom in by dragging box from left to right. The zoomed ranges are applied to axes related to the selected
plane. To zoom only specific dimension, X, Y or Z, select ZoomX, ZoomY or ZoomZ.

Zoom out by dragging box from the right to left. Zooming out is applied by factor set in
BoxZoomOutFactor. Zooming out shows a cross in the front of the box. It can be disabled by setting
BoxZoomingOutCrossVisible = False.

266 LightningChart® .NET User’s Manual, rev. 10.5

7.19.3 ZoomPadding

ZoomPadding property defines the amount of empty space left between the 3D model and the margins
after a zooming operation. ZoomPadding has no effect when moving the chart or zooming manually, for
example by mouse scrolling. Furthermore, ZoomPadding does not apply to rectangle-based zooming.

Setting ZoomPadding in WinForm:s:

chart.View3D.ZoomPanOptions.ZoomPadding
Setting ZoomPadding in Wpf:

new Padding (10, 30, 10, 10);

chart.View3D.ZoomPanOptions.ZoomPadding new Thickness (10, 30, 10, 10);

} ZoomPadding.Top
ZoomPadding.Left |
i~

Figure 7-100. ZoomPadding leaves empty space between data/labels and the margins if for example ZoomToDataAndLabels
operation is used as in this case.

ZoomPa ddmg BottOm @ s iceseies

o [l Point line series

M Point line series

Copyright LightningChart Ltd 2009-2023 267

7.19.4 ZoomToDataAndLabels

In View3D, ZoomToDataAndLabels operation causes the available area, limited by margins and
ZoomPadding, to be used as optimally as possible by moving the camera closer/farther. Axes, labels,
series data and markers are all kept visible. Chart title, annotations and legend boxes are ignored as their
position is defined in screen coordinates. ZoomToDataAndLabels maintains the viewing angle while the
contents of the view are centered.

By default, LeftDoubleClickAction property is set as ZoomToDataAndLabels, meaning double-clicking the
mouse left button activates the operation. Disable this by changing the property to Off. In code,
ZoomToDataAndLabels can be invoked by View3D.ZoomToFit(ZoomArea3D.DataAndLabelsArea)
method.

M — point line series

Figure 7-101. ZoomToDataAndLabels operation has been activated. Data series, axes, walls etc. have been optimally fitted
within the margins. Orientation arrows follow the bottom-left corner of the graph area but legend boxes are ignored.
ZoomPadding = 0 for all edges, thus no empty space is left between the margins and the DataAndLabelsArea.

Note that ZoomToDataAndLabels takes MinimumViewDistance property of the camera to account,
meaning that in some cases the full available graph area might not be used as the camera can’t get close
enough to the chart. A ChartMessage notification is sent in this case.

268 LightningChart® .NET User’s Manual, rev. 10.5

7.19.5 Rotating and panning

Camera can be rotated around the 3D model by pressing the assigned mouse button down and by
dragging horizontally or vertically. RotationX, RotationY and RotationZ properties are updated.

When a mouse button action is set to Pan, panning updates Target property of Camera. \When mouse
button action is set to PanPrimaryXZ, PanPrimaryXY or PanPrimaryYZ, the primary X, Y and Z axes ranges
are adjusted. For example, PanPrimaryXZ adjusts X and Z axes when dragging with mouse. Secondary X,
Y and Z axes are not altered.

Set DevicePrimaryButtonAction |/ DeviceTertiaryButtonAction |/ DeviceSecondaryButtonAction to
Pan/PanPrimaryXZ/PanPrimaryXY/PanPrimaryZ to enable panning. Set it to Rotate to enable rotating.
To disable panning and rotating from left mouse button, set it to None.

Use PanSensitivity to control the amount of applied panning. Respectively, use RotationSensitivity to
control the amount of applied rotation.

7.19.6 Zooming with touch screen

Set two fingers on the chart, and pinch them closer to zoom out, or away to zoom in. To disable
zooming with touch screen, set MultiTouchZoomEnabled to False.

7.19.7 Panning with touch screen

Set two fingers on the chart and move them to the same direction to apply panning. To disable
panning with touch screen, set MultiTouchPanEnabled to False.

7.19.8 Using mouse wheel over an axis

When mouse wheel is scrolled over an axis, the chart makes axis-specific zooming or panning.
WheelAreaThickness adjusts how wide the mouse wheel sensitive area is near the axis.
AxisWheelAction can be used to select between zooming and panning.

7.19.9 Zooming, rotating and panning by code

3D view is rotated by moving the View3D.Camera with RotationX, RotationY and RotationZ properties.
With Perspective and Orthographic camera, zoom can be done by setting ViewDistance. With
OrthographicLegacy camera, the Dimensions are changed to achieve zooming. Panning is done by
setting camera Target as 3D model coordinates.

Copyright LightningChart Ltd 2009-2023 269

7.20 Legend boxes

Legend boxes in View3D are largely similar to ViewXY’s legend boxes (see chapter 6.27). However, only
one legend box is allowed per graph. Also, segment-based properties do not exist since axes in View3D
cannot be divided into segments. Modify the legend box properties via View3D.LegendBox.

AllowMouse Resize True

AutoSize True

BorderCalar] 40, 255, 255, 255
BorderWidth 1

Categorization Mone

CategoryColor [] White

CategonyFort Segoe Ul, 10pt, style=Bold
Check BoxColor (] 140, 2585, 255, 255
Check Box Size 15

CheckMarkCalar [] Khaki

Fill

Height 108

Highlight SeriesOnTitle True
Highlight Series TitleColor [Yellow

Layout Vertical ColumnSpan
MouseHighlight Simple

Mouse Interaction True
MoveByMouse True
MoveFromSeresTitle True

Offset

Position Bottom Right
ScrollBar\isibility Both

Series TitleColor [] White
Series TitleFont Segoe Ul, 10pt
Shadow

ShowCheckboxes True

Showlcons True
SufaceScales

UnitsCalar] White
Units Fort Segoe U, 9pt
UseSeresTitlesColors False
ValuelLabelColor] White
ValuelLabelFort Segoe U, 9pt
Visible True

Width 161

Figure 7-102. Legend box properties in View3D

7.20.1 Hiding surface series palette scales

View3D has SurfaceScales property instead of ViewXY’s IntensityScales. To hide the palette scale in a
legend box, set SurfaceScales.Visible = False. To resize it, set ScaleSizeDim1 and ScaleSizeDim2

properties.

270

LightningChart® .NET User’s Manual, rev. 10.5

7.20.2 Positioning legend boxes in View3D

As in ViewXY, View3D’s legend boxes can be placed automatically or manually. Automatic placement
allows them to be aligned to the left/top/right/bottom side of the view, or the graph area. Control the
position with Position property. Some positioning options take margins into account while some do not.

Options ignoring margins (placing the legend box in the margin area):

TopCenter, ToplLeft, TopRight, LeftCenter, RightCenter, BottomlLeft, BottomCenter, BottomRight,
Manual

Options placing the legend box inside the margin area:

GraphTopCenter, GraphToplLeft, GraphTopRight, GraphLeftCenter, GraphRightCenter,
GraphBottomLeft, GraphBottomCenter, GraphBottomRight

Offset property shifts the position by given amount from the position determined by Position property.

// Setting legend box position, offset shifts from RightCenter position
chart.View3D.LegendBox.Position = LegendBoxPosition.RightCenter;
chart.View3D.LegendBox.Offset = new PointIntXY(-15, -70);

Manual positioning calculates the offset from the top-left corner of the legend box to the view’s top-left
corner. Note that this differs from TopLeft option, which is calculated from the top of the graph area.

BottomLeft v
ScrollBar\isibility Topleft -
Series TitleColor TopCerter
SeresTitle Fort TopRight
Shadow LeftCenter
ShowCheckboxes RightCenter
Showlcons
SurfaceScales Buﬁnmﬂgrﬂer
UnitsCalar Bottom Right
Units Fort Manual

i GraphTopLeft

lUseSeries TitlesColors GraphTopCenter

ValuelLabelColor GraphTopRight

ValuelLabelFort GraphBattomLeft

Visible GraphBottomCerter

Width Graph Battom Right
Lights GraphLeftMarginCenter
Margins (GraphRightMarginCenter b
MeshModels &.\

Figure 7-103. Positioning options for legend box. Graph.. options place the legend box inside the margins.

Copyright LightningChart Ltd 2009-2023 271

7.21 Clipping objects within axis ranges

Demo examples: Simple 3D surface grid

By setting ClipContents property to True, series, rectangles and mesh models are clipped inside axis value
ranges. The axes are always stretched for a dimension, so when clipping is enabled, it prevents rendering

outside the walls.

Figure 7-104. On the left, ClipContents is not used. Series render outside axis ranges. On the right, ClipContents is enabled.

Note that clipping does not modify the series data set itself. Clipping occurs only in rendering stage. Also,
mouse hit test will take effect also outside the walls for invisible, clipped objects.

When clipping is enabled, all lines in the chart are automatically set to line width of 1.

272 LightningChart® .NET User’s Manual, rev. 10.5

7.22 Annotation3D

Demo examples: Points tracking; Surface mouse control; Mesh models coloring, wireframe

Annotation3D collection allows adding annotations into the 3D scene. In general, they are similar to
ViewXY’s Annotations (see chapter 6.26), with the exception of Target and Location properties using X,
Y and Z dimensions.

Figure 7-105. Annotation3D object displaying the value of a 3D series. Crosshair cursor can be used to aid the target
movement.

Target can be moved by mouse in 3D. For aiding the movement, annotation shows cross-hair lines when
mouse is over the Target node. Set ShowTargetCrosshair property to Auto/On/Off and adjust the line
style in TargetCrosshairLineStyle.

Copyright LightningChart Ltd 2009-2023 273

8. Coordinate system converters

The following coordinate system converters are available in CoordinateConverters namespace, which
complements View3D usage.

e (Cartesian 3D <-> Spherical 3D
e Cartesian 3D <-> Cylindrical 3D

8.1 SphericalCartesian3D

Demo examples: Spherical coordinates

SphericalCartesian3D converter class converts between spherical and 3D cartesian coordinates.

[X: 63.0, Y: 656,Z -7.7]
[Dist91.3, Heading: 353.0°, Elevation: 45.9°]

M Field density
100.0

Figure 8-1. Example created with SphericalCartesian3D converter. Data points of SurfaceMeshSeries3D and the grid are
defined in spherical coordinates. Annotation tracks the nearest data point and displays its value in spherical coordinates.

Spherical data points are defined by SphericalPoint objects which contain the following fields:

e Distance: Distance from origin (0,0,0)
e FElevationAngle: Elevation angle. Also called as Elevation or Altitude, measured from XZ plane.
ElevationAngle is 90 degrees - Inclination angle.

274 LightningChart® .NET User’s Manual, rev. 10.5

e HeadingAngle: Heading angle. Also called as azimuth and absolute bearing

For elevation, the XZ plane is the reference plane. (e.g. equatorial plane). Elevation is an angle
measured from that plane.

Note! This converter class expects the View3D.Dimensions to be equal (cubic), otherwise the
conversion result may have to be scaled by user-side code.

View3D'’s series typically take the data input as X, Y, Z values. These values can be found e.g. in
SeriesPoint3D, SurfacePoint3D and PointDouble3D obijects.

8.1.1 Converting from spherical to cartesian

To convert a SphericalPoint to cartesian coordinate, use SphericalCartesian3D.ToCartesian() method.
It accepts data input as

e SphericalPoint point
e SphericalPoint[] array
e SphericalPoint[,] matrix

Alternatively, convert by using ToCartesian() extension method for spherical points.

// Create spherical points matrix
SphericalPoint[,] sphericalData = CreateSurfaceDatal();

// Convert matrix to cartesian matrix
SurfacePoint[,] xyzData = sphericalData.ToCartesian();

Converting matrix to cartesian in Bindable WPF chart:

SurfacePointMatrix xyzData = sphericalData.ToCartesian();

8.1.2 Converting from cartesian to spherical

To convert a cartesian point to spherical point, use SphericalCartesian3D.ToSpherical() method. It
accepts data input as PointDouble3D point with X, Y and Z fields.

Alternatively, convert a point by using ToSpherical() extension method.

// Define cartesian point
PointDouble3D point = new PointDouble3D (50, 20, 40);

// Convert to spherical point
SphericalPoint sp = point.ToSphericall();

Copyright LightningChart Ltd 2009-2023 275

8.2 C(CylindricalCartesian3D

Demo examples: Cylindrical coordinates

Converter class to convert between cylindrical and 3D cartesian coordinates.

[X: 2.6, Y: 12.2, Z: 36.6]
[Dist: 36.7 km, Angle: 86.0 °, Altitude: 12.2 km]

/

Figure 8-2. Example created with CylindricalCartesian3D converter. Data points of SurfaceMeshSeries3D and the grid are
defined in cylindrical coordinates. Annotation tracks the nearest data point of a PointLineSeries3d and displays its value in
cylindrical coordinates.

Cylindrical points are defined by CylindicalPoint objects, which contain the following fields:

e Distance: Distance along XZ plane
e Y:Yvalue
e Angle: Heading angle, also called as azimuth and absolute bearing

Note! This converter class expects View3D.Dimensions.X and View3D.Dimensions.Z to be equal,
otherwise the conversion result regarding Angle and Distance (or X and Z) may have to be scaled by
user-side code.

View3D’s series typically take the data input as X, Y, Z values. These values can be found e.g. in
SeriesPoint3D, SurfacePoint3D and PointDouble3D objects.

276 LightningChart® .NET User’s Manual, rev. 10.5

8.2.1 Converting from cylindrical to cartesian

To convert a CylindricalPoint to cartesian coordinate, use CylindricalCartesian3D.ToCartesian()
method. It accepts data input as

e CylindricalPoint point
e CylindricalPoint[] array
e CylindricalPoint[,] matrix

Alternatively, convert by using ToCartesian() extension method for cylindrical points.

// Create spherical points matrix
CylindricalPoint[,] cylindricalData = CreateData();

// Convert matrix to cartesian matrix
SurfacePoint[,] xyzData = cylindricalData.ToCartesian();

Converting matrix to cartesian in Bindable WPF chart:

SurfacePointMatrix xyzData = cylindricalData.ToCartesian();

8.2.2 Converting from cartesian to cylindrical

To convert a cartesian point to cylindrical point, use CylindricalCartesian3D.ToCylindrical() method. It
accepts data input as PointDouble3D point with X, Y and Z fields.

Alternatively, a point can be converted by using ToCylindrical() extension method.

// Define cartesian point
PointDouble3D point = new PointDouble3D (50, 20, 40);

// Convert to spherical point
CylindricalPoint sp = point.ToCylindrical () ;

Copyright LightningChart Ltd 2009-2023 277

9. ViewPie3D

Demo examples: Pie 2D; Pie 3D; Donut 3D

ViewPie3D presents data as pie and donut charts, in 3D.

3D pie/donut view

Annotations (Collection)
AutoSizeMarging Falze

» Border Border

» Camera
DonutlnnerPercents 50
ExplodePercents 10

» LegendBox3DFie LegendBoxPie3D
LightingScheme Directional FromCamera
Lights (Collection)

» Margins 30. 30, 30. 30

¥ Material
Rounding 40
StartAngle 0
Style Fie
Thickness 25
Titles MumberFomat 0 uUsD
TitlesStyle Values
Values (Collection)

» ZoomPanOptions

Figure 9-1. ViewPie3D object tree.

Hydroelectric [l Gas Nuclear [Oil& coal Others Hydmelecwil:EGus 1 Nuclear M 0il & coal Others
= — —

Figure 9-2. Example of a 3D Pie chart and a Donut chart.

278 LightningChart® .NET User’s Manual, rev. 10.5

9.1 Properties

Select the chart type, Pie or Donut, by using Style property. Control the zooming, panning and rotation
with ZoomPanOptions property tree, similarly to View3D (see chapter 7.19).

Camera property controls the viewpoint (see chapter 7.4). Predefined lighting setup can be selected with
LightingScheme property. Use Material property and its sub-properties to adjust general 3D surface
appearance and shininess.

Use DonutinnerPercents to set the donut inner radius, Rounding to adjust edge rounding radius,
StartAngle to rotate the pie, and Thickness to adjust pie thickness. ExplodePercents adjusts how far away
the exploded pie slice is, when slice’s Explode is set true.

TitlesStyle sets the pie slice text of one of the following: Titles, Values or Percents. Edit
TitlesNumberFormat for example to “0.0 TWh” to include units in the end.

Annotations can be used as in View3D, but without axis value binding properties (see chapter 7.22).

9.2 Pieslices

Pie chart data is stored in Values collection. Each item in the list is of type PieSlice. Edit the data value
in Value property. Set title string into Title.Text property. By defining TitleAlignment = Outside, the title
is drawn outside the pie.

PieSlice Collection Editor 7 X
Members: PieSlice properties:
] =] A
1| PieSlice * Z_ Ll'
2| PieSlice + v (Misc
2| PieSlice BlinkOnMouseOver False
4| PieSlice Color [150, 255, 0.0
Explode False
MouseHighlight Simple
Mouse Interaction True
ShowlnLegendBox True
v Title
Angle 0
Barder

Color [] White
DrawRectangle 71, 402, 7
Fill

Font Segoe Ul. 12pt
MouseHighlight Simple
Mouselnteraction True

Shadow

2,70, 22

Text Specifications and design
Visible True
WorldOffset
TitleAlignment Center
Add Remove Value 3500
Cancel

Figure 9-3. The Values list editor of a Pie chart.

Copyright LightningChart Ltd 2009-2023 279

9.3 Setting data by code

Data is stored in the Values list as PieSlices.

//Add pie slice data

//By using true as last parameter, the slice is automatically added to
chart.ViewPie3D.Values collection

PieSlice slicel = new PieSlice("Hydroelectric",

Color.FromArgb (150, Color.Aqua), 1.0, chart.ViewPie3D, true);

PieSlice slice2 = new PieSlice("Gas",
Color.FromArgb (150, 0, 0, 0), 2.1, chart.ViewPie3D, true);

PieSlice slice3 = new PieSlice ("Nuclear", Color.Lime, 1.3, chart.ViewPie3D,
true);

PieSlice sliced4d = new PieSlice("0il & coal", Color.FromArgb(240,0,0,0), 3.2,
chart.ViewPie3D, true);

PieSlice sliceb = new PieSlice ("Others", Color.Yellow, 0.60,
chart.ViewPie3D, true);

slice3.Explode = true;

Figure 9-4. Data set into chart. Third slice is separated by using slice3.Explode = true.

280 LightningChart® .NET User’s Manual, rev. 10.5

9.4 Viewing pie chartin 2D

Set the camera as predefined camera from top.

chart.ViewPie3D.Camera.SetPredefinedCamera (PredefinedCamera.PieTop) ;

Hydroelectic [l Gas | | M Oil& coal Others

Figure 9-5. Pie chart shown as 2D, with a predefined camera from top.

Copyright LightningChart Ltd 2009-2023 281

10

. ViewPolar

ViewPolar allows data visualization in a polar format. The data point position is determined by angular

value and amplitude (compare angle as X and amplitude as Y in ViewXY). Polar view also has zooming

and panning features.

Polar chart view

Annotations (Collection)
AreaSernies (Collection)
AutoSizeMarging Falze

Axes (Collection)
AuisAutoPlacement True

Border Border
GraphBackground

LegendBox LegendBoxPolar
Margins 0.0.0.0
Markers (Collection)
PointLineSeres (Collection)
Sectors (Collection)
ZoomCenter 0:0
ZoomPanOptions

Zoom5cale 0.922330

Figure 10-1. ViewPolar object tree.

282

LightningChart® .NET User’s Manual, rev. 10.5

10.1 Axes

Polar axes can be defined via Axes list property. Several axes can be used in same chart. Series can be

assigned with any of these axes by setting AssignPolarAxisindex property of a series. An axis represents

both angular scale and amplitude scale. Otherwise, the polar axes are very similar to ViewXY axes (see

chapter 6.2).

Amplitude Axis Angle
Amplitude Axis Angle Type
Amplitude Axis LineVisible
AmplitudeLabelsAngle
Amplitude LabelsVisible
Amplitude Reversed
AngleCrigin
AngularfxisAutoDiv Spacing
AngularfxisCircle Visible
Angularfxis MajorDivCount
AngularLabelsVisible
AngularReversed
AngularTicksVisible
AngularUnit Display
AntiAliasing

AutoFormat Labels
AuizColar

AuizThickness
GridAngular
GridVisibilityOrder
InnerCircleRadius Percentage

KeepDivCountOnRangeChange

LabelsFont

Label TicksGap
MajorDiv
MajorDivCournt
MajorDliv Tick Style
MajorGrid
MarginInner
MarginCuter

Max Amplitude

Min Amplitude
MinarDivCount
MinorDiv Tick Style
MinorGrid
MougeDragSnap TaDiv
Maousge Highlight
Mouge Interaction
MaougeScaling
Maousge Scrolling
ScaleMibs
TickMark Location
Title

LUnits

IlzePrevious Axiz Diameter
Vigible

Figure 10-2. AxisPolar property tree

Relative
True

True
False

True
True

True
False
True
Dearees
True
True

B Sienna
4
BehindSeries

True

Segoe Ul, 9pt

Falze
Simple
True
True
True

Outside
RoundAxis Title
RoundAxis Title
Falze

True

Copyright LightningChart Ltd 2009-2023

283

0,

a
5
 —1

N o

5

iy i
——
Degrees

(3

3
.3
8
g
2

L Markil
A

Af o
@ DB 1% g
=

Figure 10-3. Three axes, the first one (red) in the outer circle, the second (green) in the middle, and the third (blue) closest to
center. Axis AngleOrigin can be changed by dragging it over the axis circle. Amplitude range can be changed by dragging from the
axis. Minimum or maximum of axis amplitude range can be changed by dragging from the small nib in the end of the amplitude
scale.

10.1.1 Reversed axes

The axis can be reversed by amplitude, angle or both. To reverse the angle scale, set AngularReversed =
True. To reverse the amplitude scale, set AmplitudeReversed = True.

axidlitie axidbitie

Figure 10-4. On the left, scales are not reversed. On the right, AngularReversed = True and AmplitudeReversed = True.

284 LightningChart® .NET User’s Manual, rev. 10.5

10.1.2 Setting rotation angles of the scales

Use AngleOrigin to set the rotation angle of angle scale.

Figure 10-5. AngleOrigin = 30.

Use AmplitudeAxisAngle to rotate amplitude axis position. Amplitude scale angle can be set as
absolute angle (AmpitudeAxisAngleType = Absolute), or relative (AmpitudeAxisAngleType = Relative).

to angle scale’s angle.

Figure 10-6. AngleOrigin = 30. AmplitudeAxisAngle = 90. On the left, AmplitudeAxisAngleType = Absolute. On the right,
AmplitudeAxisAngleType = Relative. Overall the amplitude scale rotates 120 degrees in this case.

Copyright LightningChart Ltd 2009-2023 285

10.1.3 Setting divisions

Set the amplitude division count with MajorDivCount, and division magnitude with MajorDiv property. The
amplitude scale will adjust accordingly (updating MaxAmplitude). Set amplitude minor division count with
MinorDivCount.

By default, the chart tries to include almost as many angular divisions as it can fit. To control the angular
divisions, set AngularAxisAutoDivSpacing to False. Then the chart tries AngularAxisMajorDivCount count
of divisions. If chart space is too small to render all the divisions and labels, it will use a lower division count
that it can fit.

10.2 Margins

When AutoAdjustMargins is enabled, the graph size is adjusted so that there’s enough space for all the axes
and chart title. When it is disabled, ViewPolar.Margins property applies allowing setting margins manually.

In the run time, the margins rectangle can be retrieved in pixels by calling ViewPolar.GetMarginsRect
method, which applies to both automatic and manual margins. It is useful when needing to do screen-
coordinate based computation or object placement.

ViewPolar.MarginsChanged event can be set to trigger when a margin rectangle has been changed because
of for example resizing it.

The contents of the view are automatically clipped outside the margins. All contents are clipped other than
the chart title, annotations and legend boxes as their position is defined in screen coordinates, allowing them
to be freely positioned on the margins as well. A one-pixel wide border rectangle, Border, can be drawn to
display where the margins are. By default, the border is not visible in ViewPolar. The color of the rectangle
can be changed via Border.Color.

286 LightningChart® .NET User’s Manual, rev. 10.5

* Polar series title

Figure 9-7. Contents of the polar chart are clipped outside the margins. Border is drawn to mark the margin area. Axis labels stay
visible inside the borderline.

Copyright LightningChart Ltd 2009-2023 287

10.3 Legend boxes

 |egendBox
AllowMouseResize True
AutoSize True
BorderColor] 4D, 255, 255, 255
Border\Width 1
Categorization Mone
CategoryColor [] White
CategoryFort Segoe UL 10pt, style=Bold
Check BoxColor] 140, 255, 255, 255
CheckBoxSize 15
CheckMarkCalar [] Khaki
Fill
Height g22

Highlight SeriesOnTitle True
Highlight SeriesTitleCalor [“Yellow

Layout Vertical
MouseHighlight Simple
Mouselnteraction True

Maowe ByMouse True
MoveFromSeresTitle True

Offset

Palette Scales

Position Topleft
Scroll BarVisibility Both

Series TitleCalar [] White
Series Title Fort Segoe Ul, 10pt
Shadow

ShowCheckboxes True
Showlcons True
|seSeresTitlesColors False
Visible True

Width 171

Figure 10-8. Legend box properties in ViewPolar.

10.3.1 Hiding palette scales

Modify the legend box properties via ViewPolar.LegendBox. Unlike ViewXY, ViewPolar can have only
one legend box.

To hide the palette scale in a legend box, set PaletteScales.Visible = False. To resize it, set ScaleSizeDim1
and ScaleSizeDim2 properties.

288

LightningChart® .NET User’s Manual, rev. 10.5

10.3.2 Legend box positioning in ViewPolar

ViewPolar’s legend boxes can be placed automatically or manually. Automatic placement allows them to
be aligned to the left/top/right/bottom side of the view, or the graph area. Control the position with
Position property. Some positioning options take margin area into account while some do not.

Options ignoring margins (placing the legend box in the margin area):

TopCenter, ToplLeft, TopRight, LeftCenter, RightCenter, BottomlLeft, BottomCenter, BottomRight,
Manual

Options placing the legend box inside the margin area:

GraphTopCenter, GraphToplLeft, GraphTopRight, GraphLeftCenter, GraphRightCenter,
GraphBottomLeft, GraphBottomCenter, GraphBottomRight

Offset property shifts the position by given amount from the position determined by Position property.

// Setting legend box position, offset shifts from RightCenter position
chart.ViewPolar.LegendBox.Position = LegendBoxPosition.RightCenter;
chart.ViewPolar.LegendBox.0Offset = new PointIntXY(-15, -70);

Manual positioning calculates the offset from the top-left corner of the legend box to the view’s top-left
corner. Note that this differs from TopLeft option, which is calculated from the top of the graph area.

Copyright LightningChart Ltd 2009-2023 289

10.4 PointLineSeriesPolar

Demo examples: Line series, sector; Palette-colored line series; Event-colored line series; Scatter points

selecting

ViewPolar’s PointLineSeriesPolar can be used to draw a line, a group of points or a point-line. Lots of line
and point styles are available in LineStyle and PointStyle properties.

1
7
i
v

70
L
=
s
ol

! t 5 =

! i f)
i ‘ | ‘ ‘ ‘ -

[i = 0 5 P 15 2 o
8- : i I . L i i) 8

: ' ! | 8

' A
2 Pula‘r axis title] -8

' : 1
8- ’.g]
v i

\ J)
8- / &
\ A
= : !
B &
\ /
L 8
> {
&\ - //3’
- A
% S Y
s ~
XA 9 ¢
~ A
® N . i e
7 ——— N
LN S Rz N
DN - g
7~ \
Bl x| &
4 zzq\é'\r \"&; &
LT e e e SR
S® oz W2

Figure 10-9. Some data presented with ViewPolar’s PointLineSeries. Line and points are both visible.

10.4.1 Setting data

The code representing the data setting of the previous figure.

int iCount = 360;
PolarSeriesPoint[] points = new PolarSeriesPoint[iCount];

Random rnd = new Random() ;

for (int i = 0; i < iCount; i++)

{
= 10.0 + 3.0 * rnd.NextDouble (

points[i] .Amplitude =
Math.Cos (AxisPolar.DegreesAsRadians ((

[ORe
e}
c
o
= o
¢}

points[i] .Angle = (double)i;
}

chart.ViewPolar.PointLineSeries[0].Points = points;

290 LightningChart® .NET User’s Manual, rev. 10.5

A close look of the previous image reveals that the first and the last data points are not connected.
PointLineSeriesPolar has ClosedLine -property which when enabled, automatically draws a line between
these points.

// Connect the first and the last data point.
pointLineSeriesPolar.ClosedLine = true;

10.4.2 Palette coloring

Line coloring supports palette. ColorStyle property can be used to select how the palette coloring is
applied.

e LineStyle: No palette fill. The color set in LineStyle.Color property applies
e PalettedByAngle: Data point Angle field determines the color

e PalettedByAmplitude: Data point Amplitude field determines the color
e PalettedByValue: Data point Value field determines the color

Figure 10-10. Palette coloring applied.

Use ValueRangePalette property to define the colors and value steps, it works similarly to ViewXYs' and
View3D's series.

Copyright LightningChart Ltd 2009-2023 291

10.4.3 Custom shaping and coloring with CustomLinePointColoringAndShaping event

Custom coloring and coordinate adjustment can be made with CustomLinePointColoringAndShaping
event, which is called just before entering the rendering stage of the chart. It works in similar way than
the CustomLinePointColoringAndShaping event in ViewXY’s FreeformPointLineSeries (see chapter
6.14.2).

10.5 AreaSeries

Demo examples: Area series; Combined with markers; Spider / radar chart; Speedometer gauge

Area series allow data visualization in filled area style. The line style in the edge can be edited with
LineStyle property. Fill can be changed with FillColor property.

Figure 10-11. Some data presented with ViewPolar’s AreaSeries.

10.5.1 Setting data

This code represents the data setting of previous figure.

int iCount = 360;
PolarSeriesPoint[] points = new PolarSeriesPoint[iCount];
Random rnd = new Random() ;

292 LightningChart® .NET User’s Manual, rev. 10.5

for (int 1 = 0; 1 < iCount; 1i++)
{
points [i].Amplitude = 30f + rnd.NextDouble() * 5f *
Math.Sin ((double)i / 50f);
points [i].Angle = (double)i;
}

chart.ViewPolar.AreaSeries[0] .Points = points;

10.6 Sectors

Demo examples: Line series, sector; Wind rose diagram; Scatter points selecting; Scanning radar

Sectors can be defined to indicate some angular or amplitude range. Define amplitude range with
MinAmplitude and MaxAmplitude properties. Define angular range with BeginAngle and EndAngle.
Move a sector by dragging it with mouse.

Figure 10-12. Two examples utilizing sectors. The first figure, Wind Rose diagram, is made with several sectors of different
colors. In the second figure, a dial is made with AreaSeries with a sector representing RPM meter red zone.

10.7 Annotations

Demo examples: Vectors

Annotations are similar to ViewXY’s Annotations (chapter 6.26) with the exception of Target and
Location being defined in Polar axis values. Sizing by axis values is not suitable and therefore Sizing
property has only values Automatic and ScreenCoordinates.

Copyright LightningChart Ltd 2009-2023 293

10.

Figure 10-13. An annotation in Polar view.

8 Markers

Demo examples: Scatter points selecting; Combined with markers; Sonar fish indicator; Scanning radar

Markers can be used to mark a specific data value at certain position. Assign the marker with a preferred
axis by setting its AssignPolarAxisindex. Define Amplitude and AngleValue properties to put it into place.
Edit Symbol to have the preferred appearance and define the marker text with Label property.

Markers can be moved by dragging them with mouse. Set SnapToClosestPoint to Selected or All to enable
nearest data point snapping when dragging it. Selected tracks only the series this marker is set to snap
to with SetSnapSeries() method. All tracks all series.

o 18180 1s g

/
[
l
\
A

Figure 10-14. A couple of markers in a polar chart.

294

LightningChart® .NET User’s Manual, rev. 10.5

10.9 Data cursor

Starting from version 10.5, ViewPolar has a built-in data cursor, which automatically tracks the closest
series value to the mouse cursor and allows showing it in a result table. The cursor consists of hair cross
lines for amplitude and angular axes, tracking point at the location of the closest data value, axis labels
showing the current amplitude and angle values, and the result table, which besides the axis values also
shows the series name and its color.

Data cursor can be enabled or disabled via Visible property. It is also possible to hide some of the cursor
components such as the lines or the axis labels individually by setting ShowHaircrossLines or ShowLabels,
or other respective “Show” properties based on what should be hidden, false. The appearance of the
cursor can also be modified via component specific properties. LabelFont modifies the axis label texts,
and TrackingPointStyle allows altering the tracking point. Results property contains all the options to
modify the result table. To modify the individual components such as one of the labels or lines, use
options under Configure property.

// Enables data cursor but hides its axis labels.
_chart.ViewPolar.DataCursor.Visible = true;
_chart.ViewPolar.DataCursor.ShowLabels = false;

// Enabling and modifying the result table.
_chart.ViewPolar.DataCursor.ShowResultTable = true;
_chart.ViewPolar.DataCursor.Results.Background.Color = Colors.DarkBlue;

Coloring by amplitude
(Gradient palette)
Angle 140,512434906027
Amplitudé | 42,8225312110624

alue 0 S

Figure 10-15. Data cursor in polar view. Result table has been set visible by enabling ShowResultTable.

Copyright LightningChart Ltd 2009-2023 295

~ Configure

Amplitude BorderCol{[__] White
Amplitude LabelBack(l] Black
Amplitude LabelDyn: False
AmplitudeLabelFore] Yellow
Amplitude LabelVisib| True
Amplitude Line Style

Amplitude LineVisible) True
AngleBorderCalor [White
AngleLabelBackgro(l] Black
AngleLabel Dynamic| True
AngleLabelForegrou[] Yellow
AngleLabelVisible | True

AnglelineStyle
AngleLineVisible True
LabelFont Segoe Ul, 12pt
Real Time Tracking False
*~ Results
Background
Border
DataRowFont Segoe Ul. 12pt
Padding 2,22 2
Rotate Angle 0
TextColor [] White
Title Fart Segoe Ul. 14pt
UseSeres TitleColor | False
ShowColorindicatar True
ShowHaircrossLines True
ShowLabels True
ShowPolarfxisindicator | True
ShowResult Table False
ShowTag False

Show TrackingPaoint True
Snap ToMNearest DataPoir| False

strTag Tag
TrackingPoint Style
Visible True

Figure 10-16. Property tree of the data cursor.

Data cursor changes its behaviour depending on whether the tracked series has a visible line or just
visible data points (scatter plot). If the line is visible, the cursor finds the nearest series and its value
based on the cursor’s current X-position. If there are no lines visible, the cursor tracks the nearest data
point in any direction and shows it if it is near the cursor’s position. Enabling SnapToNearestDataPoint
overrides this making the cursor always finding the nearest actual data point value in any direction.

Data cursor works with PointLineSeriesPolar and AreaSeriesPolar. Sectors and Markers cannot be
tracked.

296 LightningChart® .NET User’s Manual, rev. 10.5

10.10 Zooming and panning

Zooming can be applied by code, by setting ZoomCenter and ZoomScale properties. ZoomCenter is
defined as relative X-Y ranges.

X =-1: polar view's left edge at center of chart area
X =0: polar view's center at center of chart area
X = 1: polar view's right edge at center of chart area

Y =-1: polar view's bottom edge at center of chart area

Y =0: polar view's center at center of chart area

Y = 1: polar view's top edge at center of chart area

ZoomScale is the magnifying factor. For example, value 2 makes the chart appear twice as large in both
X and Y direction compared to 1.

Mouse-zooming features can be configured in ZoomPanOptions property tree.

ZoomPanOptions

AuisMouseWheel Action Pan
LeftMouseButton Action Zoom
Middle MouseButton Action Pan
MousePan Threshold b
MouseWheelRotate Action Rotate
MouseWheel Zooming True
Rectangle ZoomAboutOrigin - False
Rectangle Zooming Threshald
Right MouseButton Action Pan
Right ToLeft ZoomAction DefaultView
ZoomFactar 2
ZoomOut RectFill
ZoomOut RectLine
ZoomRectFill
ZoomRectLine

ZoomScale 1

Figure 10-17. ViewPolar's ZoomPanOptions.

10.10.1Zooming operations and methods

Various zooming operations under ZoomPanOptions can be set as mouse actions. DefaultSettings
returns the initial zoom and centering settings. ZoomToData (called FitView before v8.4) moves the
view point to show all data inside the margins. ZoomTolLabelsArea shows the whole data frame
including labels inside the margins.

Copyright LightningChart Ltd 2009-2023 297

ViewPolar has the ZoomPadding property, which works similarly to View3D (chapter 7.19.3).

The zooming operations can also be accessed in code as methods by using
ZoomToFit(ZoomAreaRound.AreaName). For instance, calling
ZoomToFit(ZoomAreaRound.LabelsArea) method gets the same result as performing
ZoomTolabelsArea operation via mouse action.

© 6409,
66%,450

53,520

% e % % s P P £

Figure 10-18. Polar chart before and after an zooming operation, ZoomPadding = 50. On top, the chart has been manually
zoomed but no zoom operation has been called; ZoomPadding has no effect. Below, ZoomToLabelsArea was used, which
also takes into account the labels when zooming.

298 LightningChart® .NET User’s Manual, rev. 10.5

10.11 Data clipping in ViewPolar

PointLineSeriesPolar, AreaSeriesPolar, Sectors and PolarEventMarkers have ClipInsideGraph -property,
which hides the data points if they are not within the radius of the graph area. The exact clipping point is
the outermost angular axis. By default, ClipInsideGraph is enabled for all series.

// Disabling clipping outside the graph
pointLineSeriesPolar.ClipInsideGraph = false;

CenterClipping was introduced in LightningChart version 8.5.1. It works similarly to CliplnsideGraph but
controls how data is clipped at the center of the polar chart, when for example amplitude axis is dragged
with mouse. CenterClipping has three options to choose from:

-None: The old behavior before version 8.5.1. Series are shifted to the opposite side of the center point,
and not clipped in any way (except for sectors).

-Center: Data is clipped at the center point of the graph and will never be shifted to the opposite side. This
is the default option.

-InnerCircle: Data is clipped at the innermost value of the amplitude axis, that is either the minimum or the
maximum of the axis, depending on the axis being reversed or not. If the chart has several amplitude axes,
series is clipped according to the axis it is assigned to.

// Setting PointLineSeriesPolar to be clipped below amplitude axis minimum, as
reversed axis i1s not used.

_chart.ViewPolar.Axes[0] .AmplitudeReversed = false;
pointLineSeriesPolar.CenterClipping = CenterClipping.InnerCircle;

Center and InnerCircle -options are not always at the same location, as there is
InnerCircleRadiusPercentage -property, which can be used to leave empty space near the center of the
graph. In other words, it defines where an amplitude axis begins. InnerCircleRadiusPercentage is specific to
the axis it is set to, meaning it does not affect the other amplitude axes.

// Setting InnerCircleRadiusPercentage to 10 percent for this axis
chart.ViewPolar.Axes[0].InnerCircleRadiusPercentage = 10;

Copyright LightningChart Ltd 2009-2023 299

Figure 10-19. CenterClipping set to None on the left image, Center in the middle image and InnerCircle on the right image.
InnerCircleRadiusPercentage is set to 10 in each one of the images.

10.12 Custom controls - Half Donut

Demo examples: Half Donut

Half Donut, also known as half pie or semi circle, is a custom polar chart, which has been pre-configured to
a half donut shape. Although a regular polar chart could be used to create similar half donut charts, using
this custom control significantly reduces the steps user needs to do when implementing these charts.

Budget
G-force 3070 1100 /3']5‘"“'5‘€

Computer parts

C

of not selected ones Overall cost
5000€ 4632€

B Mother Board M cru M HDD M [G-forc O [G-force 2080

a . G-force 3090 M . DDR4 M . Monitor Samsung 49 [] . Mor Samsung 32 M . Others

Figure 10-20. Half donut example

Half Donuts can be added to an application the same way as LightningChart objects. First create a new Half
Donut object, then add it to a container element, Grid for instance. Configure the chart within
BeginUpdate() and EndUpdate() calls to reduce the number of frames needed to be rendered.

HalfDonut donut = new HalfDonut () :;
(Content as Grid) .Children.Add(donut) ;
donut.BeginUpdate () ;

// Configure half donut chart here
donut.EndUpdate () ;

300 LightningChart® .NET User’s Manual, rev. 10.5

10.12.1Adding data

Data can be added to a Half Donut by calling AddSlice() -method.

// Adding a slice to a donut.
donut.AddSlice (100, "Electricity", Colors.Yellow);

Individual slices can removed via RemoveSlice() -method.

// Removing a slice at index 1.
donut.RemoveSlice (1) ;

Alternatively, use HideSlice() to hide and show the slices.

// Hiding the first slice.
donut.HideSlice (0, false);

// Showing the first slice.
donut.HideSlice (0, true);

10.12.2Configuring Half Donut charts

Half Donut charts have several configure options. Texts, start and end angles, as well as colorings can be
fully modified. The needle and the marker line can also be adjusted or hidden.

// Modifying texts
donut.Title = "Chart title";

// Using custom texts

donut.EndAndStartPointText = HalfDonut.EndAndStartPointTexts.Custom;
donut.CustomLeftSideText = "New text string";

donut.CustomNeedleText = "Needle text";

// Disable needle
donut.ShowNeedle = true;

There are three coloring scales available for donuts: HSV, HSVA and Slice. When using HSV or HSVA
colorings, adjust the individual channels, then use ColorStep to modify the color differences between the
slices.

// Setting colors.

donut.SelectedColorPalette = HalfDonut.ColorScale.HSVA;
donut.ColorStep = 5;

donut.Saturation = 0.9;

donut.StartingColorValue = 30;

donut.Value = 0.6;

donut.Alpha = 0.4;

When ColorScale is set to Slice, colors assigned when the slices are added via AddSlice(), apply.

GetinternalChart() method can be used to access the internal LightningChart component. This is useful
when the donut chart’s own properties are not comprehensive enough.

Copyright LightningChart Ltd 2009-2023 301

// Modifying the legend box.
donut.GetInternalChart () .ViewPolar.LegendBox.Fill.Color = Colors.SkyBlue;

Alternatively, use various Get -methods, which allow accessing and modifying the internal LightningChart
components, such as Annotations, directly.

// Changing the internal annotation object.
donut.GetLeftSideText () .TextStyle.Color = Colors.LimeGreen;

10.12.3HalfDonutControlPanel

HalfDonutControlPanel is a Ul-element designed to modify Half Donut properties while application is
running. Adding the control panel to an application works similarly to adding a Half Donut chart. Create a
new HalfDonutControlPanel object and add it to a Ul-container. After that, it is possible to add one or more
Half Donut objects to the control panel. The panel can then be used to modify the added donut charts.

// Creating a HalfDonutControlPanel
HalfDonutControlPanel cp = new HalfDonutControlPanel();

// Adding to a grid element
_controlGrid.Children.Add (cp) ;

// Add an existing half donut object.
cp.HalfDonuts.Add (donut) ;

DarkTheme
HalfDionut

Value
Slice indicator
Slice color
Add slice
Slice click function
Slice index
Remaove slice

Marker text radial
offset percentage

Marker Text Abowve value
Marker value

Needle value

Middle text

Middle text location Angle Amplitude

Figure 10-21. HalfDonutControlPanel, dark theme has been selected.

302 LightningChart® .NET User’s Manual, rev. 10.5

11. ViewSmith

Smith charts are generally used in electronics in impedance measurements and impedance matching
applications.

Smith chart plots the data in real and imaginary values (R + jX).

Terms

Impedance =Z =R+ jX

R = Resistance, Real part

X = Reactance, Imaginary part

X > 0: Capacitive
X < 0: Inductive

Data position is determined on 2D-plot by angular on circular Real and Imaginary log-log scales.

Smith chart view
Annotations (Collection)
AutoSizeMargins False
Az AxisSmithBasze: Axis title
Border Border
GraphBackground
LegendBox LegendBox Smith
Margins 0.0.0.0
Markers (Collection)

Puoint LineSeries (Collection)

ZoomCerter 50:6.12303176911189E-15
ZoomPanQptions

Zoom5Scale 1

Figure 11-1. ViewSmith property tree.

11.1 Axis

The Smith chart has only one real axis, which can be configured via extended property tree Axis, see
figure 10-2.

Copyright LightningChart Ltd 2009-2023 303

AngularfwisAuto DivSpacing True

AngularfxisCircle\isible True
AngularfisMajorDivCount 8
AngularLabelsVisible True
AngularTick Style

AngularUnit Display Degrees
AntiAliasing True
AutoFormat Labels True
AuisColor B Sienna
Puis Thickness 2
ClipGridinsideGraph True
GridAngular

Grid DivCourt 3]
GridDivSpacing a0
Gridimg

GridReal

Grid Type Distance
GridVisibilityOrder BehindSeries
LabelsFont Segoe Ul, 9pt
Label TicksGap 47
MarginQuter 7]
MauseHighlight Simple
Mouselnteraction True
MauseScaling True
RealAxisLineVisible True
ReferenceValue 50
ScaleMibs

ShowAbsoluteValues True
Tick Mark Location Outside
Title

Lnits

Visible True

Figure 11-2. Smith axis property tree.

Most of the properties are identical to ViewPolar's axes and ViewXY's axes to customize and make the
chart more attractive. There are also advanced properties specific to ViewSmith adjustment, e.g.
GridDivCount, Gridlmg and GridReal, RealAxisLineVisible, ShowAbsoluteValues, ClipGridinsideGraph.

GridDivCount defines the amount of circular grid lines on Real Axes and logarithmic grid lines on
Imaginary scale.

Gridlmg and GridReal properties are responsible for customizing the grid lines either on Real or
Imaginary scales. In addition, Visible property can be used to hide the grid, thus a user may hide one of
them and continue to work with another.

RealAxisLineVisible property hides the axis line.

304

LightningChart® .NET User’s Manual, rev. 10.5

— System output impedance

— System output impedance

Figure 11-4. Imaginary grid lines are hidden, real lines are visible.

Copyright LightningChart Ltd 2009-2023 305

ShowAbsoluteValues property defines which values will be on scales (absolute or normalised).

ClipGridinsideGraph makes the gridlines visible outside the chart circle.

— System output impedance

Figure 11-5. ClipGridinsideGraph = False.

The fully customized Smith chart can be seen below.

306 LightningChart® .NET User’s Manual, rev. 10.5

— System output impedance

Figure 11-6. Customized Smith chart.

11.2 Margins

When AutoAdjustMargins is enabled, the graph size is adjusted so that there’s enough space for all the
axes and chart title. When it is disabled, ViewSmith.Margins property applies allowing setting margins
manually.

In the run time, the margins rectangle can be retrieved in pixels by calling ViewSmith.GetMarginsRect
method, which applies to both automatic and manual margins. It is useful when needing to do screen-
coordinate based computation or object placement.

ViewSmith.MarginsChanged event can be set to trigger when a margin rectangle has been changed
because of for example resizing it.

The contents of the view are automatically clipped outside the margins. All contents are clipped other
than the chart title, annotations and legend boxes as their position is defined in screen coordinates,
allowing them to be freely positioned on the margins as well. A one-pixel wide border rectangle, Border,
can be drawn to display where the margins are. By default, the border is not visible in ViewSmith. The
color of the rectangle can be changed via Border.Color.

Copyright LightningChart Ltd 2009-2023 307

11.3 Legend boxes

Legend boxes in ViewSmith work exactly like in ViewPolar (see chapter 10.3). Modify the legend box
properties via ViewSmith.LegendBox.

11.4 PointLineSeries

Demo examples: Line and data cursor

ViewSmith’s PointLineSeries can be used to draw a line, a group of points or a point-line as in ViewPolar.
Lots of line and point styles are available in LineStyle and PointStyle properties.

o w w
- o~ o

Axis title

- - System output impedance

Figure 11-7. Smith data series.

308 LightningChart® .NET User’s Manual, rev. 10.5

11.5 Setting data

The code below, will add one set of data points to the collection of the Smith chart.

[] m_aPoints;

Series = new (m_chart.ViewSmith, axis);
//Create data for series
m_iCount =
m_aPoints = new [m_iCount];
for (int i = @; 1 < m_iCount; i++)
{
// Sine from left to right
m_aPoints[i].RealvValue = i * (MaxReal / m_iCount);
m_aPoints[i].ImgValue = .Sin(e.01 * i)/ PI * MaxReal;
}

Series.Points = m_aPoints;
//Add series to chart
m_chart.ViewSmith.PointLineSeries.Add(Series);

11.6 Annotations

Annotations are identical to ViewXY’s Annotations (chapter 6.26) except for Target and Location being
defined in smith axis values (real and imaginary). Sizing property has only the values Automatic and

ScreenCoordinates.

Figure 11-8. An annotation in ViewSmith.

Copyright LightningChart Ltd 2009-2023 309

11.7 Markers

Demo examples: Line and data cursor

Markers can be used to mark a specific data value at a certain position. Markers can be moved by
dragging them with mouse. This property has identical definition with ViewPolar's markers (see chapter
10.8).

Define ImgValue and RealValue properties to position it. Edit Symbol to have the preferred appearance
and define text with Label property.

-#- System output impedance

Figure 11-9. A marker tracking a series in Smith view.

11.8 Data cursor

Starting from version 10.5, ViewSmith has a built-in data cursor, which automatically tracks the closest
series value to the mouse cursor and allows showing it in a result table. The cursor works identically to

310 LightningChart® .NET User’s Manual, rev. 10.5

the cursor in ViewPolar except for showing real and imaginary values instead of amplitude and angle.
Refer to chapter 10.9 to see how to configure the data cursor settings.

Data cursor tracks PointLineSeries but not Markers.

o
0n
o

SR |
0
Degrees

350

Syst tput impedance
RealValue’ 16,0485858462292
ImgaginaryValue | -22,4089877043876

o9
P
7

Figure 11-10. Data cursor in ViewSmith.

11.9 Zooming and panning

Zooming and panning options and and methods in ViewSmith work exactly the same as in ViewPolar
(chapter 10.10).

Copyright LightningChart Ltd 2009-2023 311

12. Color themes

The overall color theme of a chart can be set with ColorTheme property. Setting the theme will
override majority of the object colors in the created chart. Therefore, every manually assigned color
will be lost in the Visual Studio property grid without a warning. It is advised to first set the ColorTheme
and then modify the individual object colors.

chart.ColorTheme = ColorTheme.SkyBlue; // Changing the color theme

Figure 12-1. Two color themes. On the left, default Dark theme with some custom colors. On the right, Aurora theme.

12.1 Custom themes

LightningChart allows creating custom color themes by updating CustomDynamicTheme -property.
There are two ways to do this. Either get the custom theme to a variable and update that, or set
ColorTheme to CustomDynamicTheme and update its properties.

// Method 1

ThemeBasics theme = _chart.CustomDynamicTheme;
theme.BackgroundColor = Colors.Black;
theme.ChartTitleColor = Colors.Green;
_chart.CustomDynamicTheme = theme;

// Method 2

_chart.ColorTheme = ColorTheme.CustomDynamicTheme;
_chart.CustomDynamicTheme.ChartTitleColor = Colors.Green;
_chart.UpdateCustomTheme();

Some themes use automatic coloring for axes and series. To manually set axis or series colors, disable
MultiColorAxis or MultiColorSeries respectively, then set the colors.

ThemeBasics theme = _chart.CustomDynamicTheme;
theme.MultiColorAxis = false;

theme.AxisColor = Colors.Blue;
_chart.CustomDynamicTheme = theme;

Interactive Examples demo application has ThemeCreator, which allows investigating the color themes
and creating new ones.

312 LightningChart® .NET User’s Manual, rev. 10.5

13. Scrollbars

Demo examples: Scroll bars; Historic data review; Scale breaks

One or more scrollbars can be added via HorizontalScrollBars or VerticalScrollbars collection property.
The appearance is fully customizable, allowing defining even oval shaped buttons and scroll box. For
example, a bitmap can be used as a button icon. Scrollbars can be used with all views, but the most
apparent usage is in ViewXY.

Figure 13-1. Two different looking scrollbars

13.1 Scrollbar properties

HorizontalScrollBar can be aligned to fit the width of the graph by setting Alignment property to
BelowGraph, AboveGraph or GraphCenter. Respectively, VerticalScrollBar can be aligned to fit the
height of the graph by setting Alignment property to LeftToGraph, GraphCenter or RightToGraph. By
setting Alignment to None, the scrollbar can be freely positioned with Offset property. Adjust its size
with Size property.

// Setting the position and the size of a scrollbar. Offset is based on the
top-left corner of the chart

horizontalScrollBar.Alignment = HorizontalScrollBarAlignment.None;

horizontalScrollBar.Offset = new PointIntXY (100, 10);

horizontalScrollBar.Size = new Size (500, 30);

Scrollbars use 64-bit unsigned integer values instead of the usual 32-bit signed integer values. Value is
the current position, Minimum is the minimum range value and Maximum is the maximum range value.
This allows direct support for long measurements with high sampling frequency. For example, when
SampleDataSeries is used in the measurement, set the sample index directly as scrollbar value.
Minimum value represents the first sample index, and Maximum represents the last sample index.

SmallChange property is the amount of increment or decrement, when a scroll button is clicked. If
KeyControlEnabled is active and the scrollbar has focus, you can use also arrow keys to change the Value
by SmallChange amount. LargeChange represents a page change, which occurs when the scrollbar is
clicked outside the scroll box or scroll buttons. Use PageUp and PageDown keys to change the Value
respectively. WheelChange sets the change value when mouse wheel is scrolled over the scroll bar.

Scroll event handler can be used in code to react to scrollbar value changes. Alternatively, ValueChanged
event handler can be used. However, Scroll provides more information of how the scroll has been done.

Copyright LightningChart Ltd 2009-2023 313

13.2 Scrollbars with decimals or negative values

As scrollbars are designed to use unsigned integers to support long measurements, they cannot be
directly used when axis values are decimals or negative values. In these cases, the result will be a crash
or otherwise bad usability due to rounding errors. However, Scrollbar Minimum and Maximum values

do not have to be tied to axis ranges. This allows scaling the bars even if the axis values and/or data

values are small decimals or negative numbers.

For example, if the values to be shown range from 0.500 to 1.500, the scrollbar can be set to use range
500 -> 1500. Respectively, with data ranges from -150 to 0, the scrollbar can use values from 0 to 150.

The following example shows how to modify a vertical scrollbar when the Y-axis values are decimals
ranging from negative to positive.

double yMin = -0.178; // Some arbitrary axis values

double yMax = 1.253;

double upShift = 0.178; // To prevent the scrollbar from using negative values
double scaleFactor = 1000.0; // To scale the scrollbar to use integer values
_chart.ViewXY.YAxes[0] .Minimum = yMin;

_chart.ViewXY.YAxes[0] .Maximum = yMax;

_chart.VerticalScrollBars[0] .Minimum = (ulong) ((yMin + upShift) * scaleFactor);
_chart.VerticalScrollBars[0].Maximum = (ulong) ((yMax + upShift) * scaleFactor);
_chart.VerticalScrollBars[0].LargeChange = chart.VerticalScrollBars[0].Maximum

- _chart.VerticalScrollBars[0].Minimum;
_chart.ViewXY.YAxes[0].SetRange (0.3, 0.6); // Display only a portion of the axis

// The scroll event
private void VerticalScrollBar Scroll (object sender, ScrollEventArgs e)
{
double newMin = (yMax + upShift) * scaleFactor - (double)e.NewValue -
currentRangeY + (yMin + upShift) * scaleFactor;
if (newMin < (yMin + upShift) * scaleFactor)
{
// The scroll bar cannot go below the minimum axis value
newMin = (yMin + upShift) * scaleFactor;

}

double newMax = newMin + currentRangeY;

if (newMax > (yMax + upShift) * scaleFactor)

{
// The scroll bar cannot go above the maximum axis value
newMax = (yMax + upShift) * scaleFactor;
newMin = newMax - currentRangeY;

}

// Adjusting axis range based on the scrollbar value, triggers RangeChanged
event. Converts the values used by the scrollbar back to unscaled axis values
_chart.ViewXY.YAxes[0].SetRange ((newMin / scaleFactor - upShift) ,
(newMax / scaleFactor - upShift));

314 LightningChart® .NET User’s Manual, rev. 10.5

// RangeChanged -event to modify the axis ranges correctly
private void AxisY RangeChanged (object sender, RangeChangedEventArgs e)

{

// Prevent axis minimum value from going below yMin set earlier
if (e.NewMin < yMin)
{
double newRange = e.NewMax - e.NewMin;
if (newRange <= yMax - yMin)
{
_chart.ViewXY.YAxes[0].SetRange (yMin, yMin + newRange);

_chart.vViewXY.YAxes[0] .SetRange (yMin, yMax);
}
}
// Prevent axis maximum value from going above yMax set earlier
else if (e.NewMax > yMax)
{
double newRange = e.NewMax - e.NewMin;
if (newRange <= yMax - yMin)
{
_chart.ViewXY.YAxes[0] .SetRange (yMax - newRange, yMax);

_chart.ViewXY.YAxes[0] .SetRange (yMin, yMax);
}
}
// Modify the scrollbar based on the the new axis range.
else
{
double newRange = (e.NewMax - e.NewMin) * scaleFactor;
_chart.BeginUpdate() ;

_chart.VerticalScrollBars[0].LargeChange = (ulong) (newRange + 0.1);
_chart.VerticalScrollBars([0].Value = (ulong) ((yMax - e.NewMax +
yMin + upShift) * scaleFactor);

_chart.EndUpdate () ;

currentRangeY = newRange;

Copyright LightningChart Ltd 2009-2023 315

14. Export and printing

14.1.1 Bitmap image export

The chart can be exported as .PNG, .BMP and .JPG file with SaveToFile() method. SaveToFile(...) method
allows exporting image files with resolution decrement and smoothing/anti-alias options. To export to a
stream, use SaveToStream() method.

14.1.2 Vector image export

ViewXY, ViewPolar and ViewSmith can be also exported as .WMF, .EMF and .SVG formats. View3D and
ViewPie3D don't currently support it. Use SaveToFile or SaveToStream method with selected vector file
format.

Note! The vector output is simplified and all details, such as complex point styles, may be presented as a
plain color and simple shape. The vector output may also contain some bitmap elements.

14.1.3 Copy to clipboard

The chart can be copied to clipboard by calling CopyToClipboard(...). ViewXY, ViewPolar and ViewSmith
can copied with CopyToClipboardAsEmf{() method in vector format.

316 LightningChart® .NET User’s Manual, rev. 10.5

14.1.4 Capturing to byte array

The chart has CaptureToByteArray method, to get as a fast raw image data copy to external components
or further processing of data.

Usage

int width;

int height;

PixelFormat format;

byte[] aData = chart.CaptureToByteArray(out width, out height, out
format) ;

Bitmap bitmap = new Bitmap (width, height,
System.Drawing.Imaging.PixelFormat.Format32bppArgb) ;

System.Drawing.Imaging.Bitmapdata bitmapData = bitmap.LockBits (new
System.Drawing.Rectangle (0, 0, width, height),
System.Drawing.Imaging.ImageLockMode.ReadOnly,
System.Drawing.Imaging.PixelFormat.Format32bppArgb) ;

IntPtr ipDst = bitmapData.Scan0;

int iRowByteCount = width * 4;

int iSrcIndex = 0;

for (int 1Y = 0; 1Y < height; 1iY++)

{
Marshal.Copy(aData, iSrcIndex, ipDst, iRowByteCount) ;
ipDst = new IntPtr (ipDst.ToInt64 () + bitmapData.Stride);
iSrcIndex += iRowByteCount;

bitmap.UnlockBits (bitmapData) ;

14.1.5 Setting output stream for continuous frame writing

Use chart.OutputStream property to set a stream into which the chart will write it’s rendered frames.

This property is intended as the fastest way to capture continuous frames from the chart, especially on
Headless mode (see chapter 24).

The stream is a raw byte stream, with each pixel described with 4 bytes, one byte per channel. The
order of the channels depends on the renderer and its settings.

Copyright LightningChart Ltd 2009-2023 317

Use GetlLastOutputStreamFormat and GetLastOutputStreamSize methods to find out the format and
output size of the last written image.

Produced image size should be the size of the chart in pixels.

Note! On the contrary to the other properties of the LightningChart, set stream is NOT disposed on
chart's dispose.

Note! On the contrary to the other properties, setting this property will not cause new frame to be
rendered.

14.1.6 Printing

Call PrintPreview() method to open a print preview dialog or Print() to directly print with default settings.
Call Print{...) to print with manual settings. Printing ViewXY, ViewPolar and ViewSmith supports vector
printing as well. Supply Raster or Vector format to parameter to Print{...) method.

Printer

[HP Laserdet Pro MFP M127:M128 PC v |

[[see. | [em |

Header

Real-ime data Font...

Footer

Orientation

© Portrait

© Landscape

Margins

B [=4
% 1

Content

© Btmap [7] Keep aspect ratio

© Vector Use background fill
Use graph fill
Double resolution

Figure 14-1. Print preview dialog.

318 LightningChart® .NET User’s Manual, rev. 10.5

15. LightningChart performance

15.1 Selecting the correct API edition

Select the chart edition as instructed in chapter 1.1. Do not use series data binding features unless
necessary.

15.2 Set the rendering options correctly

LightningChart's DirectX9 rendering engine may be slightly faster than DirectX11l engine in specific
applications, but generally, leaving DirectX11 as preferred renderer is a good choice. DirectX11 also gives
better appearance.

Fonts quality setting is important as well.

See chapter 5.11.

15.3 Updating chart data or properties

Every property or series data value change will cause the LightningChart control to be redrawn. Every
redraw will cause CPU and display adapter overhead. If more than one property is programmatically
changed at the same time, the property changes should be made between BeginUpdate() and
EndUpdate() method calls, as a batch. BeginUpdate() will stop drawing the control until EndUpdate() is
called. There is an internal counter for pending BeginUpdate() calls, and when an equal amount of
EndUpdate() calls have been reached, EndUpdate() redraws the control. The following example
demonstrates how to update chart with minimal load to the computer.

chart.BeginUpdate(); //Disable redraws

//Add data to series
chart.ViewXY.SampleDataSeries[0] .AddSamples (multiChannelSampleStream[0],

false);
chart.ViewXY.SampleDataSeries[1l] .AddSamples (multiChannelSampleStream[1],
false);
chart.ViewXY.SampleDataSeries[2] .AddSamples (multiChannelSampleStream[2],
false);

//Update point counter bar
chart.ViewXY.BarSeries[0].SetValue (0,1, (double)totalPointsCollected,””,

false);

Copyright LightningChart Ltd 2009-2023 319

// Point counter label
chart.Title.Text = totalPointsCollected.ToString();

// Set monitoring scroll position to latest x
newestX = firstSampleTimeStamp + (double) (pointsLen - 1) / genSampFreq;
chart.ViewXY.XAxes[0].ScrollPosition = newestX;

chart.EndUpdate(); // Enable redraws and redraw

The internal counter allows using nesting updates as follows:

void MainMethod ()

{
chart.BeginUpdate () ;
chart.Title.Text = “My title”;
chart.ViewXY.XAxes[0] .AxisColor = Colors.Red;

UpdateSeriesColors();

chart.EndUpdate () ;
// Repaints only once.

}

private void buttonCreate Click(object sender, EventArgs e)

{

UpdateSeriesColors(); // Repaints only once

}

void UpdateSeriesColors()

{
chart.BeginUpdate () ;

foreach (PointLineSeries series in chart.ViewXY.PointLineSeries)

{

series.LineStyle.Color = Color.Yellow;

}

chart.EndUpdate() ;

Updating series data depends on how the data is stored. For array series, InvalidateData() method has
to be called after updating the array contents, otherwise the Ul doesn’t get notified about the changes.

ObservableCollection, useful for data binding in WPF bindable chart, will update itself with every point
or point's field because of automatic notifications. Thus, InvalidateData() is not needed. However,
ObservableCollections cause slightly reduced performance compared to arrays or lists, which is
noticeable especially when having a large amount of data points.

320 LightningChart® .NET User’s Manual, rev. 10.5

15.4 Line series tips

- When using a line series, use SampleDataSeries, if it is suitable for the application. It is the fastest
one to draw and doesn’t need as much memory as other line series types. If it is not an option, prefer
PointLineSeries over FreeformPointLineSeries.

- Set PointsVisible property false, if the data points don’t have to be visible.

- Set line width to 1 with LineStyle. Width property.

- Use solid line style by setting LineStyle.Pattern to Solid.

- Disable anti-aliasing by setting line series LineStyle.AntiAliasing to None and set chart’s
AntiAliasLevel to 0.

- Disable all mouse interactivity, by setting AllowUserInteraction of a series to false. Alternatively,
disable whole chart’s mouse interactivity by setting chart’s chart.Options.AllowUserinteraction to
false.

- Hide the legend box if there is no need for it. ShowInLegendBox -property can also be disabled for
all the series. These work especially when there are a lot of series in a chart.

chart.ViewXY.LegendBoxes[@].Visible = false;
chart.ViewXY.PointLineSeries[@].ShowInLegendBox = false;

15.5 Intensity series tips

Applies to: IntensityGridSeries, IntensityMeshSeries

- Change the Optimization property of the series to StaticData, if the data won’t be updated
continuously. DynamicData is better choice if data is changed many times per second.

- Use Optimization: DynamicValuesData to update only the Value fields of Data array’s
IntensityPoint structures, and call InvalidateValuesDataOnly method to update the chart. This way,
the update is much faster as the geometry of the series is not recalculated. This is only intended to
be used in applications where the data X and Y values of the nodes stay in the same place, for
example in thermal imaging solutions.

Applies to: IntensityGridSeries

- For high-resolution thermal imaging applications, enable PixelRendering for IntensityGridSeries.
- For rapidly updating data sets, use SetValuesData and SetColorsData methods instead of Data
property to save memory and to improve performance.

15.6 3D Orthographic view tips

Use View3D.Camera.Projection = Orthographic instead of OrthographicLlegacy for maximum
performance. Difference can be seen especially when zooming the view while having lots of series and
data in it (see chapter 7.4).

Copyright LightningChart Ltd 2009-2023 321

15.7 3D surface series tips

Applies to: SurfaceGridSeries3D, SurfaceMeshSeries3D, WaterfallSeries3D

Disable lighting by setting SuppressLighting to false if light reflections and shading are not needed.
If contour lines are used, use FastColorZones or FastPalettedZones instead of ColorLines or
PalettedColorlLines.

Applies to: SurfaceGridSeries3D

With scrolling data (like 3D-spectrum or spectrogram), use InsertRowBackAndScroll and
InsertColumnBackAndScroll methods to update data and axis ranges.

15.8 Maps tips

Applies to: ViewXY.Maps

Set ViewXY.Maps.Optimization to CombinedLayers in a typical situation where the X and Y axis
ranges are kept the same, and other data is presented over the maps. This allows the map layers to
be rendered into the same buffer image, resulting into more efficient rendering.

Set ViewXY.Maps.Optimization to None, if the map titles should be displayed over IntensityGrid or
IntensityMesh series.

15.9 Hardware

To get the absolute maximum performance for a LightningChart application, the computer hardware
must be powerful. In many applications, display adapter power is more important than CPU power.
Use as modern display adapter as possible. DirectX 9.0c level display adapters work. ‘c’ comes from
DirectX Shader Model 3, which is required by some effects.

GetRenderDevicelnfo() method can be called to find out if some feature is not supported by the used
display adapter. Especially, if the returned information states that FastVertexFormat is not
supported, it is a bad thing for performance.

Note! LightningChart is a GPU hardware accelerated chart. Without a good GPU, the performance
may be much lower than in optimal case. A good resource to compare the performance of different
GPUs is PassMark’s Video Card Benchmarks (http://www.videocardbenchmark.net/gpu list.php).
A video card having 10x better score than other, can be also 10 times faster in LightningChart use,

but overall difference in refresh rate is rarely that great, since another computer hardware may
become a bottleneck.

322

LightningChart® .NET User’s Manual, rev. 10.5

http://www.videocardbenchmark.net/gpu_list.php

16. LightningChart notifications, error and exception handling

From version 8.4 onwards LightningChart will send messages from the chart to the user through
ChartMessage event. The messages can contain notifications about for example chart performance,
incorrect usage, warnings or errors. Define a handler for chart.ChartMessage event to listen to the
messages. The event contains a ChartMessagelnfo struct, which holds the message’s information.

Prior to version 8.4 chart sent messages through ChartError event (now marked as obsolete), which
contains less information than ChartMessage. User can listen to ChartError events instead of
ChartMessages and get the same base information, but it is recommended to use ChartMessage instead.

ChartMessagelnfo’s MessageSeverity property tells how severe the message is. Messages can be filtered
based on their severity. Possible severity levels for messages are:

- Debug - Debug information which usually is not interesting to the user and no action is required.
- Information — An incorrect usage of a chart, for example using an invalid property setting, has
happened which should not impact chart performance. User action is typically not required.

- Warning — Some incorrect usage of chart, for instance using a disposed object, has happened
which might cause some minor problems with the chart such as performance loss. User action
might be required.

- RecoverableError — An error has occurred from which the chart should have recovered. User
must listen to ChartMessage events or messages with this severity will be thrown as exceptions.

- UnrecoverableError — An error has occurred from which the chart couldn’t recover. Might
indicate an incoming exception. User must listen to ChartMessage events or messages with this
severity will be thrown as exceptions.

- Critical — A critical error has occurred in the chart which will always be thrown as an exception.

MessageType property explains the basic type of the message while Details property has more specific
information about it. All the possible message types can be found in MessageType enum located in
LightningChart namespace.

Unwanted messages can be filtered out by changing the chart.Options.ChartMessageMinimumLevel
property value. The property allows only messages of the set minimum level and higher to be sent
through the event system. It is set to MessageSeverity.Warning by default.

Exceptions are thrown as ChartException objects, which contains Exceptioninfo struct with detailed
information about the exception similar to ChartMessage events. In some cases, the chart may throw
exceptions of other types, such as a rendering engine exception. If user wants the chart to raise an
exception on all messages with a severity level of MessageSeverity.Warning or higher,
chart.Options.ThrowChartExceptions property needs to be set true (is false by default).

It is recommended to always subscribe to ChartMessage event to be notified about errors in the chart
and possible exceptions from unlistened messages. In case of having any problems with the chart and
support for it is needed, please ensure there is a working message/exception handler in the application,
log the ChartMessages and include them in your support request.

Copyright LightningChart Ltd 2009-2023 323

17. ChartManager component

17.

ChartManager control can be used to coordinate interoperation of several LightningChart controls. Add
ChartManager control to your form. Then, assign the manager control to ChartManager property of all
LightningChart controls.

1 Chart interoperation, drag-drop

ChartManager enables series drag-drop from chart to another in WinForms. For WPF it’s not usable for
technical reasons.

Series have DisableDragToAnotherAxis property which must be set to False to enable the dragging. It is
True by default.

Axes have AllowSeriesDragDrop property which can be set to False to prevent dragging over specific
axis. Default value is True.

Move mouse over the series to be dragged, press left mouse button down to start dragging.

Dragging over Y axis: Drag the series over Y axis of another chart and release the button. The other chart

takes the ownership of the series and the series is assigned to the target Y axis. This also assigns the first
X axis for the series.

Dragging over X axis: Drag the series over X axis of another chart and release the button. The other chart

takes the ownership of the series and the series is assigned to the target X axis. This also assigns the first
Y axis for the series.

17.2 Memory management enhancement

In some extreme real-time monitoring applications, the .NET garbage collector does not free unused
memory well enough, if the application is run with high CPU load. Garbage collector frees all the memory
at once, causing a visible ‘freeze’ or ‘pause’ when updating a chart. To make the chart updates smoother,
enable ChartManager’s MemoryGarbageCollecting property. This allows a separate thread to be used
to free the memory more often regardless of the CPU load. Using MemoryGarbageCollecting is
recommended to be used with multi-core processors, as the thread running will slightly load the CPU.

324

LightningChart® .NET User’s Manual, rev. 10.5

18. LightningChart® Trader

Trader libraries (Arction.Wpf.TradingCharts.dll / Arction.WinForms.TradingCharts.dll) consist of controls,
tools and methods for creating trading and finance applications easily. The Trader library is built over
robust and fast LightningChart API.

TradingChart is currently the main control. TradingChart comes with a compact interface of properties
and methods to build trading applications, without the APl overhead that comes from complex
engineering applications. Current version includes WPF and WinForms Forms charts, UWP trading charts
will become available later.

This document illustrates the basic usage of LightningChart® TradingChart as well as most of its available
properties and settings. There are also several TradingChart based examples in Interactive Examples
application. It is recommended to check those as well to get better understanding of building trading
applications with TradingChart.

18.1 Basic usage

18.1.1 Creating TradingChart

In order to use TradingChart, corresponding assemblies should be added to the project. First, add
Arction.Wpf.TradingCharts.dll to the References of the project.

using Arction.CustomControls.Trader.Wpf;

It is then possible to create TradingChart -objects.

// Creating a TradingChart component
TradingChart _chart = new TradingChart();

// Adding chart into the parent container, in this case a grid.
(Content as Grid).Children.Add(_chart);

It is also possible to create a TradingChart component by dragging it from Visual Studio’s toolbox. This
option is available if LightningChart .NET SDK v.9 or above has been installed to the machine.

The result of both of the actions above can be seen below.

Copyright LightningChart Ltd 2009-2023 325

50, 20Y/ 10Y) 5V | 3V n;M 1M 10D 5D 1D |12H) 3H | TH |10m| 1m

Figure 18-1. A TradingChart has been created and added to a container.

18.1.2 Using TradingChart in WinForms application

TradingChart is available for WinForms applications from LightningChart version 10.0 onwards. In
general, WinForms Trader works similarly to WPF Trader. All the features and properties are available
in both versions.

Creating a WinForms TradingChart in code:
using Arction.CustomControls.Trader.WinForms;

// Creating a TradingChart component
TradingChart _chart = new TradingChart();

// Adding chart into the parent container, in this case a grid.
_chart.Parent = this;

_chart.Dock = DockStyle.Fill;

18.1.3 Deploying TradingChart

To be able to run TradingChart applications in computers the software is deployed into, a Deployment
Key has to be applied in code. This is done similarly to regular LightningChart (see chapter 4.4).
reference to the internal charting component has to be added to the project
(Arction.Wpf.Chart.LightningChart or Arction.WinForms.Chart.LightningChart).

LightningChart® .NET User’s Manual, rev. 10.5

18.2 Configuring user interface

TradingChart has several properties to control the appearance of the user interface.

18.2.1 Setting color-theme

TradingChart has several pre-defined color-themes to choose from. SetAppearance() -method can be
used to change the theme.

// Setting a color-theme.
_chart.SetAppearance(Appearance.Dark);

Color-theme can also be changed via the tool menu, which by default is visible in the top right corner of
the chart.

Figure 18-2. Some of the pre-defined color-themes.

Note that changing color-theme overrides manually set colors for indicators and drawing tools.
Therefore, individual colors should be modified only after setting the color-theme.

Copyright LightningChart Ltd 2009-2023 327

18.2.2 Setting price chart type

TradingChart allows setting in which format the trading data is displayed. Available types are
CandleSticks, Bars, Line and Mountain. PriceChartType -property can be used to change this.

// Show trading data as a mountain.
_chart.PriceChartType = PriceChartType.Mountain;

Figure 18-3. Available price chart types.

18.2.3 UI components

TradingChart’s user interface has several built-in components, which can be hidden in case they are not
needed. All the components are visible by default.

328 LightningChart® .NET User’s Manual, rev. 10.5

Search bar ' f Tool menu

Segment splitter

| Volume

Time range buttons

21126/29(3 |6 [1116|19[24/27|1 |7 [10]15/20(23 281 |6 [11[14[19]22(27 1 [4 |Quel2 1722261 |6 |9 1417 [22/28/31|5 1013 19 [24[27 1 |4 |9 |14 17 [23/28(3 |8 [11 16|21 2%
[Aug Sep Oct N Dec Jan Feb Mar

2022

12/11/202

0¥ 207 10Y| 5V | 3Y nsm 1M 10D 5D | 1D 12H| 3H | TH | 10m| Tm

Figure 18-4. TradingChart’s main user interface components, all of which can be hidden by disabling the respective
property.

Search bar allows searching trading data from a provider (AlphaVantage.co) based on a symbol or
company name. The visibility of the search bar can be controlled via ShowSearchBar -property.

// Hiding the search bar.
_chart.ShowSearchBar = false;

Indicator and Tool menus are located in the top-right corner of the chart. These menus contain all
available technical indicators and drawing tools. Tool menu also allows changing the color-theme of the
chart. These components can be hidden by disabling ShowToolMenu -property.

// Hiding the drawing tool and color-theme selection menu.
_chart.ShowToolMenu = false;
_chart.ShowIndicatorMenu = false;

The time range of the chart can be modified via the buttons in the bottom-right corner of the chart.
ShowTimeRangeSelection -property controls their visibility. Note that hiding the time range buttons
will automatically adjust the bottom margin in order to remove unneeded empty space below the
chart.

// Hiding the time range buttons.
_chart.ShowTimeRangeSelection = false;

Copyright LightningChart Ltd 2009-2023 329

Some technical indicators such as Volume and RelativeStrengthindex are drawn in a separate segment
below the chart. In these cases, a horizontal line called Segment splitter is automatically drawn
between the segments. Dragging this line by mouse allows modifying the heights of the segments.
Segment splitters can be hidden by disabling ShowSegmentSplitters -property. This also prevents
modifying the segment heights by mouse dragging.

// Hide the vertical lines drawn between segments.
_chart.ShowSegmentSplitters = false;

18.3 Using internal LightningChart control

TradingChart is built on top of a regular LightningChart control. GetlInternalChart() -method allows
direct access to TradingChart’s internal LightningChart control and all of its properties. It is therefore
possible to have a combination of features from both charts. To access the internal chart a reference to
respective assembly must be included in the project (i.e. Arction.Wpf.Charting.LightningChart).

// Changing properties of the internal chart
LightningChart chart = _tradingChart.GetInternalChart();
chart.ViewXY.GraphBackground.Color = Colors.Black;

// Alternatively
_tradingChart.GetInternalChart().ViewXY.GraphBackground.Color = Colors.Black;

// Adding a regular Annotation to a TradingChart

LightningChart chart = _tradingChart.GetInternalChart();

AnnotationXY anno = new AnnotationXY(chart.ViewXY, chart.ViewXY.XAxes[0],
chart.ViewXY.YAxes[@0]);

chart.ViewXY.Annotations.Add(anno);

It should be noted that changing properties of TradingChart may override settings done directly to the
internal chart control. For example, modifying the appearance of TradingChart overrides the above
GraphBackground color setting. Furthermore, actions such as adding various series to their respective
collections should be done with caution as the same collections are also used by the TradingChart
series.

// Example of a conflicting situation.

LightningChart chart = _tradingChart.GetInternalChart();

StockSeries stockSeries = new StockSeries(chart.ViewXY, chart.ViewXY.XAxes[9],
chart.ViewXY.YAxes[@0]);

chart.ViewXY.StockSeries.Add(stockSeries);

chart.viewXY.StockSeries[@].Visible = false;

330 LightningChart® .NET User’s Manual, rev. 10.5

The above example does not change the visibility of the newly added StockSeries, instead the OHLC-
data loaded to TradingChart will be hidden as the same StockSeries collection is used by the
TradingChart and its internal chart. The loaded OHLC-data is rendered using a StockSeries which
reserves the first index of that collection.

18.4 Adding trading data

Trading data can be added to TradingChart by reading from a file, by fetching data from an internet
data provider, or by setting data in code via SetData() method. In the latter case, the trading data can
be from any source as long as it can be presented in OHLC-format.

18.4.1 Data provider

TradingChart has a build-in data provider and search bar which allow searching for securities based on
a symbol or a security name. Unless hidden by disabling ShowSearchBar -property, the search bar is
always visible in the top-left corner of the chart. Securities can be searched by typing search string to
the text box and then pressing the “Search” -button or Enter key. The search results are then showed in
a list below the search bar. Clicking a result loads the corresponding trading data set from the provider
and adds it to the chart. “Loading data set...” text is displayed while the data is being fetched.
Depending on the provider and the size of the data set, this can take up to several seconds.

-
appld
Symbol Mame Currency Region TimeZone Type
AAPL Apple Inc. ush United States UTC-05 Equity
APLE Apple Hospitality REIT Inc. usbD United States UTC-05 Equity
APRU Apple Rush Company Inc. uspb United States UTC-05 Equity

APPLX Appleseed Fund Investor Share usD United States UTC-05 Mutual Fund
APPIX Appleseed Fund Institutional Share USD United States UTC-05 Mutual Fund
GAP) Golden Apple Oil & Gas Inc. usb United States UTC-05 Equity
AAPLARG Apple Inc. ARS Argentina UTC-03 Equity
APCFRK Apple Inc. EUR Frankfurt UTC+02 Equity

Figure 18-5. Security search based on the search term “apple”. The results are listed below the search bar.

Copyright LightningChart Ltd 2009-2023 331

Fetching data is also possible without using the search bar. OpenSymbol() -method can be used in code
behind to obtain data according to chart’s Symbol property.

// Fetch data from internet based on symbol “GO0G”.

_chart.Symbol = "GOOG";
_chart.0OpenSymbol();

OpenSymbol() automatically adds the obtained data to the chart. Furthermore, it fetches information
based on Symbol, such as currency, and shows that in the chart’s title.

DataRequestType -property sets the preferred data format when requesting data from the provider.
Based on this setting, the returned data string will be in either json or csv format.

// Data is requested from a provider as a csv formatted string
_chart.DataRequestType = DataRequestType.Csv;

DataRequestType affects the pre-defined provider if it supports fetching data in multiple formats and
works also if user has a customer specific Rest Api key for it. Note that requesting a json string is often
faster compared to csv.

18.4.2 From file

TradingChart can read trading data directly from a .csv -file via GetOhlcDataFromFile() -method. It
takes file name (and path) as a parameter and returns an array of OHLC -data.

// Read trading data from a file
OhlcData[] dataFromFile = _chart.GetOhlcDataFromFile("fileName.csv");

GetOhlcDataFromFile() -method assumes that the data in the file is in the following column order:
DateTime, Open, Close, High, Low, Volume (Optional), Openlinterest (Optional). DateTime field doesn’t
have to contain hours, minutes and seconds. Currently, accepted date formats are “yyyy-mm-dd”, “yy-
mm-dd” and “dd-mm-yyyy”. Accepted separators include dash (-) and backslash (/).

SetData() -method allows adding the loaded trading data to the chart:

// Set data to the chart
_chart.SetData(dataFromFile, "Symbol", "Data set title");

Loading data from a file automatically adjusts the time range of the chart based on the first and the last
DateTime values of the data set.

332 LightningChart® .NET User’s Manual, rev. 10.5

18.4.3 Custom data provider

TradingChart uses pre-defined data providers unless set otherwise. MarketStack and AlphaVantage.co
are currently available. However, it is recommended to use these data providers for testing and
learning purposes only, since they are used by all users and there often are limits on how many data
requests are allowed. Therefore, we recommend using an own ApiKey or data provider for the final
product.

If user wants to use some of the pre-defined data providers but use an own API key, SetRestApiKey() -
method should be used. This method makes TradingChart to use the given key when requesting trading
data.

// Makes requests from a data provider to use the given key.
chartl.SetRestApiKey("apiKey");

Note that setting DataProvider resets the current AP| key. Therefore SetRestApiKey() should be called
only after the provider has been set.

With Trader’s source code, user has also the option to create an own data provider class, in which case
the search bar will also work. If pre-defined data provider should not be used, DataProvider -property
should be set to UserDefined. This prevents TradingChart from trying to automatically fetch data from
a provider.

// Set chart not to use pre-defined data provider.
_chart.DataProvider = DataProvider.UserDefined;

One way to add trading data when no pre-defined data provider is used is to define an own OhlcData -
array and use SetData() -method. The OhlcData -array does not have to be filled by reading the data
from a file. It is entirely up to the user to decide from where and how the data is obtained, and then
implement the necessary logic.

OhlcData[] dataArray = new OhlcData[dataPointCount];
// Fill the Ohlc-data array with the fetched data.

_chart.SetData(dataArray, "currency", "dataSetTitle");

Copyright LightningChart Ltd 2009-2023 333

18.4.4 Adjusting time range

The time range of the chart can be adjusted via the buttons in the bottom-right corner of the chart.
Clicking a button automatically modifies the trading data based on the selected time value. If the data
has been fetched from a provider, a new data set from the provider will be requested.

If the selected time range is longer that the length of available data, time range will be adjusted based
on the data. For instance, if three years is selected but there is only one year of data available, time
range of one year will be shown. Furthermore, the selected time range is always based on the latest
time value of the loaded data set. If trading data is obtained from a provider, the latest time value
usually is the current time. However, this is not always the case is the data is loaded from a file. For
example, if the latest date of the data is 31.08.2019, selecting one-year time range shows data between
01.09.2018 —31.08.2019.

TradingCharts also have methods for setting custom time range in code. OpenSymbol() -method can be
given start and end time parameters, in which case only data for that time range is requested from the
provider.

// Request data for the first half of the year 2018.
_chart.Symbol = "GOOG";
_chart.OpenSymbol(new DateTime(2018, 1, 1), new DateTime(2018, 6, 30));

If no parameters are given to OpenSymbol(), the current time range is used.

Another way to adjust time range is SetTimeRange() -method, which can be used also with data loaded
from a file.

// Adjust time range to show the first half of the year 2018.
chartl.SetTimeRange(new DateTime(2018, 1, 1), new DateTime(2018, 6, 30));

If current trading data has been loaded from a provider, a new data set is automatically requested from
the provider based on the given time range and the current Symbol setting. SetTimeRange() works
even when no data is loaded to chart. Data requests after this method has been called also use this
time range unless modified again.

Note that pressing the time range buttons below the chart, or loading data from a file, override the
time range set by SetTimeRange().

334 LightningChart® .NET User’s Manual, rev. 10.5

18.5 Data cursor

TradingChart has a built-in data cursor which automatically tracks the visible trading data and technical
indicators and shows their current values in a legend box. The cursor tracks data and indicators which
are in the segment the mouse is currently over on. For instance, Volume values will not be tracked as
they are shown in a separate segment below the chart, unless mouse is moved over that segment in
chart. Data cursor does not track drawing tools.

Data cursor tracks the Close values of the OHLC-data by default. This can be changed via OhlcField -
property.

// Set cursor to track High values.
_chart.DataCursor.0OhlcField = PriceChartOhlcField.High;

5200

5100

4900
4800

4690

4600 2

SMAT (7) 456
— EMA1 (10) 4557,
4500 Wl 460,00

4400

400k 4 Volume

300K

200K

100K

7 11015 (20 |2 3 16 11 (1419

1 4 9 12118 2226 1 6 9 15 20 26 5 1011311925 |2 |7 10
May Jun 5

Jul Aug Se Oct

25/06/2019

Figure 18-6. Data cursor tracking trading data and every added indicator. The price values are shown in the legend box next
to the cursor. Volume is not tracked since it is shown in a separate segment.

By default, all data and every indicator will be tracked. It is however possible to control which series
should be tracked. TrackOhIcData -property can be disabled to prevent the cursor from tracking the
OHLC data.

// Data cursor doesn’t track the OHLC data loaded to chart.
_chart.TrackOhlcData = false;

Copyright LightningChart Ltd 2009-2023 335

Disabling TrackOhlcData affects only the OHLC data, indicators will still be tracked. To prevent cursor
from tracking specific indicators, their Trackindicator property can be disabled.

// Stops tracking this indicator

simpleMovingAverage.TrackIndicator = false;

Trackindicator is available for indicators which are drawn in the same segment as OHLC data. In other
words, segment indicators such as Volume and Relative Strength Index are always tracked if mouse is

moved over the segments they belong to.

18.6 Data packing

TradingChart has DataPacking property which when enabled, causes data values close to each other be

packed to a single rendered item. This improves performance, especially with larger data sets, but the

data might not be as accurate as without packing.

// Enabling data packing.
_chart.DataPacking = true;

18.7 Technical indicators

TradingChart has several built-in Technical Indicators, which are automatically calculated based on the
loaded trading data. Some indicators also have certain user-defined property settings affecting the

calculations, for example time period count for determining the number of days the indicator is based

on.

18.7.1 Adding indicators

TradingChart has an Indicators list which is used to store all technical indicators. To add any technical
indicator to the chart, first create and configure the indicator, then add it to Indicators -list.

For example, adding a RelativeStrengthindex:

RelativeStrengthIndex rsi = new RelativeStrengthIndex ()

{
LinewWidth = 1f,
PeriodCount = 14,
HighColor = Colors.Lime,
LowColor = Colors.Red

}i

_chart.Indicators.Add(rsi);

336

LightningChart®

.NET User’s Manual, rev. 10.5

All the available indicators can also be added via the Indicator menu in the top-right corner of the chart.
The indicators added this way always use their default settings for properties such as PeriodCount.

18.7.2 Removing indicators

Removing technical indicators can be done by removing them from TradingChart’s Indicators list. The
indicator is automatically disposed after removing it from the list.

_chart.Indicators.Remove (indicator) ;

Removing all indicators of same type:

List<Indicator> itemsToRemove = new List<Indicator>();

foreach (Indicator ind in _chart.Indicators)
{
if (ind is RelativeStrengthIndex)
itemsToRemove.Add (ind) ;

}
foreach (Indicator i in itemsToRemove)
_chart.Indicators.Remove (i) ;

18.7.3 Indicator types and properties

Technical indicators are either drawn on top of the trading data in the main segment (overlay), or in a
separate segment below the chart (study) in which case the segment is automatically created when the
indicator is added.

Indicators have several properties that can be used to modify their appearance or the calculations they
are based on. These properties can be modified when the indicator is created or any time after its
creation.

// Modifying indicator properties after its creation.
rsi.PeriodCount = 10;

rsi.LineColor = Colors.Blue;

rsi.LineWidth = 2;

Common indicator properties:

PeriodCount Set the number of time periods used to calculate indicator values. Default
value depends on the indicator.
LineWidth Set the width of the indicator line where applicable. If the indicator composes

of several lines, the property affects them all.
Color Set the color of the indicator line where applicable. If the indicator composes
of several lines, there is a separate Color-property for each line.

Copyright LightningChart Ltd 2009-2023 337

Trackindicator

When enabled, data cursor will track this indicator and show its current value

in the legend box. Only applicable to indicator shown on top of the trading

data. Indicators in separate segments are always tracked.
LimitYToStackSegment |If enabled, the indicator is clipped outside its segment.

Some technical indicators also have properties that are specific to that indicator, for instance

NumberOfStandardDeviations for Bollinger Band. These properties are set similarly to the common
properties.

18.7.4 List of available indicators

Envelopes

Bollinger Band

Donchian Channels

Fractal Chaos Bands

High Low Bands

Keltner Channels

Moving Average Envelopes (MAE)
Prime Number Bands

Standard Error Bands

Stoller Average Range Channel

Moving Averages

Exponential Moving Average (EMA)

Simple Moving Average (SMA)

Triangular Moving Average (TMA)

Time Series Moving Average (TSMA)
Variable Index Dynamic Average (VIDYA)
Variable Moving Average (VMA)

Volume Weighted Moving Average (VWMA)
Weighted Moving Average (WMA)

Welles Wilder’s Smoothing Average (WWS)

Oscillators - Money Flow

Accumulation/Distribution (A/D)
Chaikin Money Flow

Chaikin Oscillator

Ease of Movement

Elder’s Force Index

Klinger Volume Oscillator (KVO)
Market Facilitation Index
Money Flow Index

Negative Volume Index

338

LightningChart® .NET User’s Manual, rev. 10.5

On-Balance Volume (OBV)

Positive Volume Index

Price Volume Trend

Trade Volume Index

Twiggs Money Flow

Volume

Volume Oscillator

Volume Rate of Change (Volume ROC)

Williams Accumulation Distribution (Williams AD)
Williams Variable Accumulation Distribution (WVAD)

Oscillators - Price

Aroon Oscillator

Awesome Oscillator

Balance of Power

Commodity Channel Index (CCl)
Center of Gravity

Chande Forecast Oscillator (CFO)
Chande Momentum Oscillator (CMO)
Coppock Curve

Detrended Price Oscillator

Elder-Ray Index

Elder Thermometer (custom version)
Fractal Chaos Oscillator (FCO)
Intraday Momentum Index (IMl)
Moving Average Convergence Divergence (MACD)

Moving Average Convergence Divergence Custom (MACD Custom)

Momentum Oscillator

Percentage Price Oscillator (PPO)
Performance Index

Pretty Good Oscillator

Prime Number Oscillator (PNO)
QStick

Rainbow Oscillator

Rate of Change (ROC)

Relative Strength Index (RSI)
Stochastic Momentum Index (SMI)
Stochastic Oscillator

Stochastic Oscillator Smoothed

True Strength Index (TSI)

Ultimate Oscillator

Ultimate Oscillator Smoothed (UO ST)
Williams Percent Range (Williams %R)

Copyright LightningChart Ltd 2009-2023

339

Statistics

Correlation Coefficient
Kurtosis

Median Price
Skewness

Standard Deviation
Standard Error

Typical Price
Weighted Close

Trend Indicators

Volatility

Accumulative Swing Index (ASI)
Average Directional Index (ADX)
Aroon

Gopalakrishnan Range Index (GAPO)
Ichimoku Cloud

Linear Regression

Parabolic Stop-and-Reverse (PSAR)
Random Walk Index

Range Action Verification Index (RAVI)
Schaff Trend Cycle (STC)

Schaff Trend Cycle Signal (STC Signal)
System Quality Number Trend (SQN Trend)
Supertrend

Swing Index

Triple Exponential Average (TRIX)
Vertical Horizontal Filter (VHF)

Average True Range (ATR)
Chaikin Volatility

Ehler Fisher Transform
High Minus Low

Historical Volatility

Mass Index

Z-Value

Other Indicators

Open Interest

340

LightningChart® .NET User’s Manual, rev. 10.5

Two Histograms and Line

Two Histograms and Line is a custom indicator which allows showing given data in a separate segment
using two histogram and a line. Unlike the other indicators the data isn’t based on the loaded OHLC-
dataset. Instead, a separate dataset can be assigned to the indicator.

Properties and methods specific to Two Histograms and Line:

LineSeriesTitle Sets the title for the indicator line.

HistogramColor1 /

HistogramColor2 Sets the color for the bars in the respective histogram.

HistogramWidth1 /

HistogramWidth2 Sets the width for the bars in the respective histogram.

HistogramTitlel /

HistogramTitle2 Sets the title for the respective histogram.

HistogramsStacked When enabled, the two histograms are stacked on top of each other.
AddLine() Adds the line to the indicator. Needs a DateTime array, Y-value array, line

width and color as parameters. Note that this should be called after the
indicator has been added to the chart’s indicator collection.

AddHistogram() Adds a histogram to the indicator. Needs a DateTime array, Y-value array, bar
width, color and histogram index as parameters. The last parameter accepts
values 1 and 2. The number indicates which histogram should be addedor
updated. Note that this should be called after the indicator has been added to
the chart’s indicator collection.

AN i
\‘H‘ ‘H‘w \ M\\

2
2l
o
g

Copyright LightningChart Ltd 2009-2023 341

18.8 Drawing tools

Drawing tools are visual tools which can be freely drawn on the TradingChart. All drawing tools, except
FreehandAnnotation, are based on two or more control points. The first point is set when drawing a
drawing tool has started. The next control points are set when the chart is left-clicked. These control
points can also be moved by mouse after they have been set. Drawing tools are drawn and updated in
real-time during drawing and while control points are being moved.

Figure 18-7. Trend line has been drawn. Control points can be seen at both ends of the line.

18.8.1 Adding drawing tools

Drawing tools can be drawn by calling their StartDrawing() -method. After the method has been called,
drawing is started as soon as the chart is left-clicked, which then sets the first control point. Drawing is
stopped by left-clicking the chart again.

// Start drawing a yellow Trend line.
TrendLine trendLine = new TrendLine () ;
trendLine.LineColor = Colors.Yellow;
_chart.DrawingTools.Add (trendLine) ;
trendLine.StartDrawing () ;

342 LightningChart® .NET User’s Manual, rev. 10.5

TradingChart also has a build-in Tool menu for drawing tools, located in the top-right corner of the
chart. This menu can also be used to change the color-theme. Opening the menu and selecting a
drawing tool instantiates the respective drawing tool and enters drawing mode by internally calling
StartDrawing(), meaning that left-clicking the chart adds the first control point.

Adding drawing tools in code behind works similarly to adding technical indicators. TradingChart has
DrawingTools list which is used to store all the drawing tools. However, since drawing tools are drawn
based on two control points, these points have to be set via SetControlPointsAndDraw() -method.

// Adding a drawing tool in code behind
FibonacciArc fibonacciArc = new FibonacciArc();
fibonacciArc.FillEnabled = true;
_chart.DrawingTools.Add (fibonacciArc) ;

// Setting control points.
fibonacciArc.SetControlPointsAndDraw (
new Point (10, 200),
new Point (20, 300)
)

Note that drawing tool has to be added to DrawingTools collection before setting its control points.
Furthermore, currently it is not possible to add FreehandAnnotations in code behind.

18.8.2 Removing drawing tools

Drawing tools can be removed by highlighting one of the control points via mouse over and pressing
Delete. Removing drawing tools in code is done similarly to indicators (see Removing indicators
chapter). Also, calling DisposeAllDrawingTools() -method removes all drawing tools from the chart.

// Clears and disposes all drawing tools.
_chart.DisposeAllDrawingTools () ;

When new trading data is set to chart or when time range is changed via time range buttons, all
drawing tools are by default automatically cleared. AutoClearDrawingTools -property controls this
functionality. Its default value NewDataAndTimeRange causes the above behaviour. Setting the
property to NewData clears drawing tools when a new data set is loaded, but not when time range is
changed. None prevents all automatic clearing (calling DisposeAllDrawingTools() -method still works).

// Clear drawing tools when new data set is loaded but not when time range is
changed.
_chart.AutoClearDrawingTools = ClearDrawingTools.NewData;

Copyright LightningChart Ltd 2009-2023 343

18.8.3 List of Drawing tools

There are several properties that all drawing tools have.

Common drawing tool properties:

LineColor Set the color of all the lines the drawing tool has. Affects also control points.
LineWidth Set the width of all the lines the drawing tool has. Affects also control points.
LabelColor If the drawing tool has text labels, changes their color.

Magnetic When enabled, the drawing tool lines are automatically attached to the

nearest OHLC-value in vertical direction. Disabled by default.
LimitYToStackSegment |If enabled, the drawing tool is clipped outside the main segment.

Elliot Wave

Elliot Wave draws a wave pattern between several control points.

Properties specific to Elliot Wave:

WaveType Changes the type of the wave. The wave types differ in length and in the
markings used.

Figure 18-8. Elliot Wave has been drawn to the chart.

344 LightningChart® .NET User’s Manual, rev. 10.5

Fibonacci Arc

A trend line is drawn between two control points, followed by multiple arcs intersecting the line at
levels 38.2%, 50.0%, 61.8% and 100%. The arcs are centered on the second control point.

Properties specific to Fibonacci Arc:

FillEnabled When enabled, the areas between the arcs are colored.
LabelDistance Controls how far in pixels the labels are from their respective arc lines.
FullCircle When enabled, the arcs are drawn as full circles.

User-given data set
2 43

ta set

»*'(J i

Figure 18-9. A Fibonacci Arc has been added to the chart.

Fibonacci Fan

Draws a trend line between two control points, then several Fibonacci fan lines starting from the first
point and crossing an “invisible” vertical line at the X-value of the second point based on Fibonacci
levels at 38.2%, 50.0% and 61.8%.

Properties specific to Fibonacci Fan:

FillEnabled When enabled, the areas between the fan lines are colored.
LabelDistance Controls how far in pixels the labels are from their respective fan lines.

Copyright LightningChart Ltd 2009-2023 345

Figure 18-10. A Fibonacci Fan with colored fills enabled (FillEnabled = true).

Fibonacci Retracements

Draws a trend line between two control points, then several horizontal retracement lines based on
selected price range (height) of the trendline. The retracement lines are drawn at Fibonacci level of

38.2%, 50.0% and 61.8%.

Properties specific to Fibonacci Retracements:

FillEnabled When enabled, the areas between the retracement lines are colored.
LabelDistance Set how far in pixels the labels are from the respective retracement lines.

Figure 18-11. Fibonacci Retracements with colored fills enabled (Fill[Enabled = true).

346 LightningChart® .NET User’s Manual, rev. 10.5

Freehand Annotation

Draws a polygon of any shape based on the mouse movement. A text can be shown inside the polygon.

Properties specific to Freehand Annotation:

FillColor Changes the fill color of the annotation

BorderColor Changes the border color of the annotation

BorderWidth Changes the border width of the annotation

FillEnabled When enabled, fills the annotation with color set via FillColor.

ShowText When enabled, shows a text inside the annotation. The location of the text is
calculated automatically to be in the center of gravity.

AnnotationText Sets the text to be shown when ShowText is enabled.

TextColor Sets the color of the text.

FontSize Sets the font size of the text.

Microsoft Corporation (MSFT) [USD] <NASDAQ Stock Exchange>

orporation [USD]

21126 [1 4 19 121171231261 16 19 114117122128 |3 (6 [1114119]24 |1 |5 [10[1518/23]26 |1 16 |9 114119122/127 |3 (6 [11116/19]24 |1 |4 |9 [14]17122]25 |1 |6 [11114]19]22 |2 |5 [10[1318123]27|2 |7 [10]15/2124]29]3 [6 111114120125 |2 |5 [10]13
Mar Apr May Jun Jul Aug Sep Oct Nov Dec J; Feb Mar

2020

Figure 18-12. A Freehand Annotation has been drawn. A text is shown in the center of the annotation (ShowText = true).

Copyright LightningChart Ltd 2009-2023 347

Head and Shoulders

Head and Shoulders pattern draws a baseline with three peaks.

Properties specific to Head and Shoulders:

FillColor Changes the fill color of the peak areas.

Left Shoulder
]

Right Shoulder
[]

Figure 18-13. Head and Shoulders pattern in a trading chart.

Linear Regression

Calculates and draws a linear regression line between two control points. Then draws two channel
lines, one above and one below the regression line based on the selected channel type.

Properties specific to Linear Regression:

ShowExtensions When enabled, draws dashed extension lines which extend to the last value of
the loaded trading data.

FillEnabled When enabled, colors the areas between the channel and the regression line.

ChannelType Determines the used Linear Regression Channel type such as standard

deviation channel, Raff channel and regression line only.

NumberOfStandardDeviations Sets the number of standard deviations defining how far the channel
lines are from the regression line. Has effect only when ChannelType is set to
StandardDeviations.

348 LightningChart® .NET User’s Manual, rev. 10.5

(MSFT) [USD] <NASDAQ

Figure 18-14. A Linear Regression Channel based on one standard deviation, ChannelType = StandardDeviations,
NumberOfStandardDeviations = 1.

Pitchfork
Pitchfork, also known as Andrews Pitchfork, can be used to identify support and resistance levels for a
stock's price. It places three control points on the chart and draws a line from the first point through

the midpoint of the other points.

Properties specific to Pitchfork:

FillColor Changes the fill color of the area between the Pitchfork lines.

User-given data set [AAPL]
0 01 42 143 |a4 las

Figure 18-15. Pitchfork has been added tot he chart.

Copyright LightningChart Ltd 2009-2023 349

Trend Line

Draws a straight line between two control points.

Properties specific to Trend Line:

ShowExtensions When enabled, draws dashed extension lines which extend to the first and the
last value of the loaded trading data.

iven data set [AAPL]
41 42 43 44 45 a6 47 ap a0 50 Is1 12 12 3 4 s 16 17 la o

Figure 18-16. Trend Line with extensions enabled (ShowExtension = true).

Triangle
Draws a triangle based on three control points.

Properties specific to Triangle:

FillColor Changes the fill color of the Triangle.

350 LightningChart® .NET User’s Manual, rev. 10.5

Figure 18-17. Triangle on a trading chart.

XABCD Pattern

Draws a five point pattern to the chart.

Properties specific to XABCD Pattern:

FillColor Changes the color XAB- and BCD-areas of the pattern.
ShowRatios When enabled, shows ratio values between varios legs. Set true by default.

Apple Inc (AAPL) [USD] <United States>
2

22[27[30[4 [0 [12[17[20]25/30]2 [8 [1316]21]24 1294 [7 [12[15]20]25]28]2 |5 [10[15[18[23]28]2 [7 [10[15]20]23]29]3 [6 1114 [20]25[28]2 [7 [10[15[18 241 |4 |9 [14]17[22]25[30 4 [7 [12[18[21]26]29[4 [9 [12[17|20[25[31]3 [8 [1
] Sep Oct Nov Dec Jan Feb Mar |Apr [May Jun

2002

Figure 18-18. XABCD Pattern has been added to the chart. ShowRatios is enabled.

Copyright LightningChart Ltd 2009-2023 351

Other available drawing tools
- Arrow
- Ellipse
- Fibonacci Time Zones
- Horizontal Line
- Horizontal Ray
- Plain text
- Rectangle
- Text Box
- Vertical Line

18.9 TradingChart troubleshooting

TradingChart automatically shows some error messages when something is not working as expected.
The messages are displayed on top of the chart as well as in Visual Studio’s output window. The error
text above the chart is removed when it is either clicked or a new data set is loaded to the chart.

Unable to obtain data from provider.

Figure 18-19. An error message is displayed above the chart.

It is possible to disable the error messages shown above the chart via ShowErrorMessages -property in
which case they are shown only in the output window.

// Do not show error messages above the chart.
_chartl.ShowErrorMessages = false;

18.9.1 Error list

Below is a list of several error messages, possible reasons for them, and how they could be fixed. Note
that the list does not contain every possible error. In case an error cannot be solved, contact
LightningChart’s technical support at support@lightningchart.com.

352 LightningChart® .NET User’s Manual, rev. 10.5

mailto:support@lightningchart.com

Message: “Unable to obtain data from provider.”
Explanation: TradingChart cannot connect to data provider and therefore cannot fetch any data.

Possible fix: Ensure that Internet connection is working.

Message: “No data for given time range.”

Explanation: There is no trading data found for the given time range. This message can occur with data
set loaded from a provider as well as with a set loaded from file.

Possible fix: Try using a different time range.
Message: “Time range set to: start time — end time”

Explanation: This is not an actual error. Instead it informs that the time range was changed, but the
change is not visible because there is no data loaded to the chart.

Possible fix: Call SetTimeRange() after a data set has been loaded. Alternatively, just load a new data
set from a provider in which case the previously set time range will be used.

Message: “End time should be after start time.”
Explanation: Time range is set incorrectly when setting it manually.

Possible fix: Ensure that the start date of the time range is before the end date.

Message: “Couldn’t obtain Symbol information.”

Explanation: Happens when calling OpenSymbol() -method in code. The method tries to fetch
corresponding symbol information as well as the data set. The message indicates that obtaining symbol
information has failed. The data set could still have been loaded in some cases.

Possible fix: Check that the given symbol string is correct. If the error still occurs, data provider itself
can have some temporary issues.

Message: “The requested stock could not be found.”

Explanation: Data provider cannot find the provided symbol or security name. This error can happen
when calling OpenSymbol() -method in code or when using the search bar.

Possible fix: Check that the given symbol string is correct. If the error still occurs, data provider itself
can have some temporary issues or simply does not have access to that particular security.

Copyright LightningChart Ltd 2009-2023 353

Message: “Invalid API call. Unable to fetch data with the given parameters.

Explanation: Data provider cannot find data with the given parameters. This error happens mostly
when calling OpenSymbol() -method in code.

Possible fix: Check that the given symbol string is correct. If the error still occurs, data provider itself
can have some temporary issues or simply does not have access to the data of that particular security.
Alternatively, a security might not have weekly or monthly data available if using time ranges of several
years.

Message: “Call limit reached.”

Explanation: Data providers may have a call limit, for example maximum amount of data requests per
minute or per day. This error indicates that the limit has been reached.

Possible fix: Try requesting data again later. Alternatively, get a personal rest API key which allows more
data requests.

Message: “Invalid data provider API key.”

Explanation: An incorrect Rest API key is given to SetRestApiKey() -method when using customer-
specific key.

Possible fix: Ensure that a valid key is used. If the error occurs when using pre-defined data provider, try
setting DataProvider to MarketStack (or AlphaVantage) in code, which should reset the connection.

_chart.DataProvider = DataProvider.MarketStack;

Message: “Data array contains no points.”

Explanation: This message occurs only when SetData() -method is called in code while being given an
empty data array.

Possible fix: Ensure that the OhlcData -array given to SetData() is not null or empty.

Message: “Data contains empty values.”

Explanation: This is more of a warning that an actual error message. It means that the loaded OHLC-
data set contains at least one empty value, either Open, High, Low, Close or Volume field has a string
value of “”. Note that zero does not count as an empty value and will be drawn on the chart.

354 LightningChart® .NET User’s Manual, rev. 10.5

Possible fix: This message does not prevent TradingChart from working. The data will be loaded and
drawn normally, but the empty values will be skipped. It is up to user to implement a logic to handle
these cases if necessary.

Message: “Unable to use pre-defined data provider.”
Explanation: TradingChart cannot use pre-defined data provider due to connection issues.

Possible fix: Ensure that Internet connection is working properly. If the problem still occurs, contact
Lightningchart’s technical support.

Message: “Problem with connection to Arction server.”

Explanation: TradingChart cannot fetch required information from LightningChart’s server to use pre-
defined data provider.

Possible fix: This error most likely is not caused by user. Therefore, the only fix is to use another data
provider. Alternatively, contact LightningChart’s technical support to receive further information about
the current server status.

18.9.2 Frequently asked questions

-How to prevent constantly hitting the “Call limit reached error”?

-This error mostly happens when using the pre-defined MarketStack or AlphaVantage.co data provider.
LightningChart’s own rest API key is used by all users testing the TradingChart, and since the key has a
call limit (calls per minute), this error may occur during high usage. Therefore, LightningChart Ltd.
recommends users to use the pre-defined provider only for testing, and to get an own API key or use
another data provider to ensure that fetching data works at all times when building their own
applications.

-Fetching data from provider seems slow, can something be done about it?

-This depends mostly on how large the requested data set is and on the data provider itself. If using the
pre-defined AlphaVantage.co provider, this might happen as the requested data set is very large.
Currently, AlphaVantage supports only “compact” (the last 100 data points) or “full” (all data)
outputsize options. Therefore requesting a smaller data set could help. Furthermore, fetching data as a
json-string is often faster than as a csv -formatted string.

Note that TradingChart automatically caches the fetched data, so in many cases changing time range
doesn’t cause chart to request a new data from the provider. Thus often the first request takes longer
than the subsequent ones.

Copyright LightningChart Ltd 2009-2023 355

19. SignalGenerator component

Demo examples: Areas; Oscilloscope; SignalGenerator -> speakers; Intensity persistent layer, signal; High-
speed data, stacked axes (WinForms only)

SignalGenerator component can be used to generate real-time signal. The signal is produced as the sum
of different waveforms. Several SignalGenerator components can be linked by master-slave relationship,
to produce a synchronized, multi-channel output. SignalGenerator is very useful when developing signal
monitoring or data acquisition software with LightningChart.

Start Stop Sampling frequency (Hz) 44100 = | Output interval (ms) 1 = |Factor 1 -
Sine | Square I Triangle I Naize I Fieq. sweep I Amplitude sweep I All |
Sine components -+
Enabled Amplitude [V] Offzet [v] Frequency [Hz) Delay [ms]
f.00 £ |0.00 £ [10.000 = |0.00 = x

Figure 19-1. Signal generator component with Sine page selected.

The waveforms are divided into following categories: Sine, Square, Triangle, Noise, Frequency sweep,
and Amplitude sweep. Respective tab pages for them can be seen in the component. In Sine page, sine
waveforms can be added. In Square and Triangle pages, square and triangle waveforms can be added
respectively. In Noise page, random noise waveforms can be generated. In Frequency and Amplitude
sweep pages, frequency and amplitude sweeps can be added. In All page, all the waveforms can be set
in a stacked view.

19.1 Sampling frequency, Output interval and Factor

SamplingFrequency tells how many signal points are generated per second. Higher sampling frequency
produces more accurate signal but comes with a cost of increased dataflow and overhead. With high
sampling frequency, signals containing high frequencies can be presented. Sampling frequency must be
more than twice the maximum signal frequency to fulfill Nyquist sampling theorem.

Outputinterval sets the preferred interval of calculated output samples, in milliseconds. For example, if
Outputinterval is set 100, a bundle of samples is received 10 times per second, after every 100 ms period.
Using lower values will give smoother real-time monitoring output. Note that Outputinterval is not
accurate and may vary with computer load. The output data stream automatically generates more

356 LightningChart® .NET User’s Manual, rev. 10.5

samples if the period has been longer than expected. The data stream will get in shape also with high
data rates and under heavy computer overhead.

Factor multiplies the output samples by selected value. For example, to generate mV signal instead of V
signal, set Factor to 1E-3.

19.2 Sine waveforms

Sine waveform is constructed with Amplitude, Offset, Frequency and DelayMs parameters. Amplitude
is the maximum voltage difference from zero level. Note that the total range is bipolar. Peak-to-peak
value will be 2 * Amplitude. Offset is DC level added to the signal. In other words, positive values shift
the signal up and negative values shift it down in the value range. Frequency tells the signal cycle count
in Hertz. One cycle per second is frequency of 1 Hertz. DelayMs delays in the signal in milliseconds.

Sine components
Enabled Amplitude [v) Offset (V] Frequency [Hz) Delay [mz]
| & 40,00 = |-5.00 = 120,000 = 0,00 = b4

LightningChartUltimate Oscilloscope @ 100,0 kHz

Figure 19-2. A simple sine waveform signal with settings above.

Sine components ILI

Enabled Amplitude [+ Offeat [W] Frequency [Hz) Delay [mg)
7 40,00 </ 500 | (20,000 = [o.00 =l]
7 10,00 </ 0.0 =] |5dlaco =/ |0.00 | L]

Figure 19-3. The signal of two sine waveforms with their settings above.

Copyright LightningChart Ltd 2009-2023 357

19.3 Square waveforms

Square waveform has one more parameter compared to sine waveforms, Symmetry. The range for
Symmetry is 0...1. Symmetry tells how long the signal stays in high state, related to cycle period. With a
value of 0.5 the low and high states of the signal are of equal lengths.

Square components

Enabled Amplitude [+ Offzet V] Frequency [Hz] Dielay [ms) Symmetny
v 35.00 = |0.00 = |30,000 = |0.00 = |0.80 = »

LightningChartUltimate Oscilloscope @ 100,0 kHz

Figure 19-4. One square waveform signal, with symmetry of 0.8. Settings above.

19.4 Triangle waveforms

Triangle waveform also has Symmetry parameter. It controls the way the triangles lean. 0.5 is the value
for symmetrical triangle. Values under 0.5 lean left and values over it lean right.

Triangle components +
Enabled Amplitude 1) Oiffset) Frequency (Hz) Delay [mz) Symmetiy
7 40,00 = (0,00 = |25.000 = |0.00 = |0.70 z >

LightningChartUltimate Oscilloscope @ 100,0 kHz

Figure 19-5. One triangle waveform signal, with symmetry of 0.7.

358 LightningChart® .NET User’s Manual, rev. 10.5

19.5 Noise waveforms

Noise waveform is a randomly generated signal. Points get randomized between —-Amplitude and

+Amplitude.

Noise components -+
Enabled Amplitude [\V] Offzet (W)
30,00 < (a0 = (F

LightningChartUltimate Oscilloscope @ 100,0 kHz

Figure 19-6. Noise waveform signal generating random data points between amplidutes -30 and +30.

19.6 Frequency sweeps

Frequency sine sweep runs from frequency 1 to frequency 2 in given time period, with constant
amplitude. Use FrequencyFrom to set the start frequency, FrequencyTo to set the end frequency,
Amplitude to set the constant amplitude, and DurationMs to set the duration in milliseconds.

Figure 19-7. Frequency sweep.

Copyright LightningChart Ltd 2009-2023 359

19.7 Amplitude sweeps

Amplitude sine sweep runs from amplitude 1 to amplitude 2 in given time period, with constant
frequency. Use AmplitudeFrom to set the start amplitude, AmplitudeTo to set the end amplitude,
Frequency to set the constant frequency, and DurationMs to set the duration in milliseconds.

Figure 19-8. Amplitude sweep.

19.8 Starting and stopping

Start the generator by pressing Start button or calling Start method. Stop the generator by pressing Stop
button or calling StopRequest method. Stopped event will fire when stopping is complete.

19.9 Multi-channel generator with master-slave configuration

Several SignalGenerator components can be connected to produce a synchronized, multi-channel
output.

MasterGenerator controls the sampling frequency, start, stop and output of all generators. It produces
the first channel in the output data stream.

Slave generators are connected to master generator by assigning their MasterGenerator property.
Define the signal waveforms freely. Slave generators are started and stopped by the master generator.
They get the output data stream channel index in the connection order. Slave generators must be
connected before starting the master generator.

360 LightningChart® .NET User’s Manual, rev. 10.5

19.10 Output data stream

The output data stream consists of two-dimensional arrays, obtained via DataGenerated event handler.
Generally, the event is raised after every Outputinterval.

The event handler obtains a reference to a samples array, and a time stamp for the first samples bundle
received during this interval. The first dimension of samples array represents channels and the second
the samples for each channel. All channels have equal sample count.

Raising DataGenerated event:

m_signalGenerator.DataGenerated += m signalGenerator DataGenerated;

private void m signalGenerator DataGenerated(DataGeneratedEventArgs args)
{
// Event code

To investigate the channel count of the data stream, get the length of first dimension:

channelCount = args.Samples.Length;
To get the sample count of a channel:

sampleBundleCount = args.Samples[0].Length;

The following code will demonstrate how to forward the output data directly to SampleDataSeries list
of LightningChart while updating real-time monitoring scroll position.

private void m signalGenerator DataGenerated(DataGeneratedEventArgs args)
{

chart.BeginUpdate () ;

int channellIndex = 0;

int sampleBundleCount = args.Samples[0].Length;

foreach (SampleDataSeries series in chart.ViewXY.SampleDataSeries)

{

series.AddSamples (args.Samples[channelIndex++], false);

//Set latest scroll position x

newestX = args.FirstSampleTimeStamp + (double) (sampleBundleCount - 1) /
generatorSamplingFrequency;

chart.ViewXY.XAxes[0].ScrollPosition = newestX;

chart.EndUpdate () ;

Note that with args.Samples[0] you can access the master generator’s data. args.Samples[1] gives
access to first slave generator data, args.Samples[2] to second slave etc.

Copyright LightningChart Ltd 2009-2023 361

20. SignalReader component

Demo examples: Signal reader; Waveform and spectrum; Waveform, 3D spectrogram; Audio L+R, area,
Spectrogram

SignalReader component allows reading data from a signal source file and playing it back with selected
rate. SignalReader output data stream format is similar to SignalGenerator (see chapter 19.10).

SignalReader component currently supports wav and sid formats.

20.1 Key properties

FileName defines the file to be opened, for example “c:\\wavedata\\audioclipl.wav”
Factor sets the output factor. Raw signal samples are multiplied by this value.
Outputinterval is similar to SignalGenerator’s property (see chapter 19.1).

IsLooping allows file read to jump to the beginning of the file, when the end of file has been reached.

After the file has been opened, the following properties can be used to get information of the file:
ChannelCount: the channel count of the file.

SamplingFrequency: sampling frequency in Hz.

FileSize: File size in bytes.

Length: Sample count for each channel. It may not be exact for all signal file formats.

IsReaderEnabled: Status telling is the component started and reading data. If Looping is set to false and
end of file is reached, IsReaderEnabled will change to false.

20.2 Opening file quickly for playback

Call OpenfFile(...) method supplied with a file name. The file name must have an extension of supported
formats. Then, call Start() method.

signalReader.OpenFile (“c:\\wavedata\\audioclipl.wav”);

signalReader.Start () ;

362 LightningChart® .NET User’s Manual, rev. 10.5

A playback of a PCM-formatted WAV file is then started

The playback can be stopped by calling StopRequest() method.

Glassic,wav sfreq = 44 kHz

- 15000
110080

| so00

| o

i

| so00

10000

| -15000

Figure 20-1. SignalReader reads a wav file and LightningChart SampleDataSeries draw the signal. A cursor line is used to mark
the current reading position and the X-axis scroll position.

Copyright LightningChart Ltd 2009-2023 363

21. Audiolnput component

Demo examples: Audio input, waveform; Audio input, spectrogram

Audiolnput component allows user to capture signal from Windows’ recording device to
System.Double values. These values can then be rendered on LightningChart, sent to an AudioOutput
component, saved to a file etc...

21.1 Properties

BitsPerSample — Gets or sets how many bits are allocated per sample. Supported values are 8 and 16. If
other value is used, 16 is used instead. It can be set when IsinputEnabled is false.

IsinputEnabled — Gets or sets the state of this instance (i.e. starts or stops it). Setting this property true
is the same as calling Start method where false is the same as calling Stop method.

IsStereo — Gets or sets whether to use two channels (stereo) or just one (mono). Can be set when
IsinputEnabled is false.

LicenseKey — Gets or sets the license key in normal or encrypted format.

RecordingDevice — Gets or sets the current recording device. Can be set when IsinputEnabled is false.
By setting this property to null, Windows' default recording device is used.

SamplesPerSecond — Gets or sets the sampling frequency. Can be set when IsinputEnabled is false.

ThreadInvoking — Gets or sets whether this instance automatically synchronizes its events to the main
Ul thread, hence eliminating the need to call Control.Invoke method on caller's side.

Volume — Gets or sets the volume, ranging from 0 to 100. Can be set when IsinputEnabled is false.

21.2 Methods

GetRecordingDevices — Use this static method to get a list of available Windows recording devices.

RequestStop — Signals this Audiolnput instance to stop. Stop does not occur immediately after exiting
this method. By subscribing to Stopped event, caller is notified when everything has stopped.

Start — Starts reading audio from selected recording device. Started event is triggered when internal
thread is about to start.

364 LightningChart® .NET User’s Manual, rev. 10.5

21.3 Events

DataGenerated — Occurs when a new set of audio data has been generated. Data and its first sample’s

time stamp can be read from a DataGeneratedEventArgs object that is provided as a parameter.

Started — Occurs when an audio input has been started. StartedEventArgs object that is provided as a
parameter, contains three public fields: BitsPerSample, ChannelCount and SamplesPerSecond.

Stopped — Occurs when the audio input has been stopped.

21.4 Usage (WinForms)

This chapter describes the usage of WinForms version of Audiolnput class. WPF version will be handled

in chapter 21.5.

21.4.1 Creation

21.4.2

Create a new Audiolnput instance either manually in the source code or by dragging and dropping
it from Visual Studio’s toolbox on to the form, user control etc.

If there is no need to show the GUI (i.e. if using an own GUI or controlling Audiolnput object from
the source code) then set Visible property false. Parent property is always recommended to be set
so that when the parent control is disposed, Audiolnput instance gets disposed automatically. If
there is no parent, then Dispose method should be called when Audiolnput instance is no longer
needed. If a new Audiolnput instance is created via Visual Studio’s toolbox, Parent property is
automatically set.

It is recommended to set LicenseKey property so that the Audiolnput instance uses an explicit
license key instead of trying to find one from Windows' registry. If a trial version/license is used,
LicenseKey property can be left to its default value.

Event handling

To get new samples from Audiolnput instance, the user needs to subscribe at least to
DataGenerated event. When DataGenerated event is triggered, new samples and the first sample
time stamp from a DataGeneratedEventArgs object are provided as a parameter.

Copyright LightningChart Ltd 2009-2023 365

21.4.3

21.4.4

Subscribe to Started event to know when Audiolnput instance has started its audio sampling task.
A StartedEventArgs object provides information about Audiolnput as a parameter, for example the
number of bits per sample, is the stream audio mono or stereo, and how many samples per second
are generated.

Subscribe to Stopped event to know when Audiolnput instance has stopped. The event has no
parameters and its sole purpose is to tell user when everything has been stopped.

Configuring

Set Threadinvoking = true to allow an Audiolnput instance to synchronize its events to the main Ul
thread automatically but make sure that the Audiolnput instance has a valid parent control.
ThreadInvoking is set ot false by default so do not forget to call Control.Invoke method if updating
GUI in DataGenerated event handler.

Setting RecordingDevice property allows using other Windows’ recording device than the default
one. Get all available recording devices by using Audiolnput’s static method GetRecordingDevices.

Volume can be controlled via Volume property. Valid values are from 0 to 100 where 0 means mute
and 100 maximum volume. The volume can also be set when Audiolnput instance is enabled (i.e.
generating samples).

Set SamplesPerSecond property to use difference sampling rate than the default (44100 Hz).
Setting this property while Audiolnput instance is enabled has no effect.

To use mono audio instead of stereo (default), set IsStereo to false. Setting this property while
Audiolnput instance is enabled has no effect.

If 8 bits per sample is preferred rather than 16 (default), set BitsPerSample property to 8. Valid
values are 8 and 16 (default). This limitation comes from PCM wave format. Setting this property
while Audiolnput instance is enabled has no effect.

Starting

To start Audiolnput instance, either set IsinputEnabled property true, or call Start method.
DataGenerated event then provides a new set of audio samples which can e.g. be rendered using
LightningChart instance.

366

LightningChart® .NET User’s Manual, rev. 10.5

21.4.5 Stopping

To stop Audiolnput instance, set IsinputEnabled to false, or call RequestStop method. RequestStop
method does not stop instantly. Instead, it signals Audiolnput instance to stop as soon as it is
possible. Subscribe to Stopped event to know when Audiolnput instance has stopped.

21.5 Usage (WPF)

This chapter describes the usage of WPF version of Audiolnput class. WPF version of Audiolnput works
mostly the same way as WinForms version. However, there are a couple of things that a WPF user
should be aware of.

21.5.1 Creation

Create a new Audiolnput instance either manually in code-behind or by dragging and dropping it
from Visual Studio’s toolbox on to a window, user control etc.

If there is no need to show GUI (i.e. if an own GUI or Audiolnput object is controlled from the
source code) then use Audiolnput from Arction.WPF.SignalTools namespace. This particular class is
derived from FrameworkElement and all its properties are bindable. For convenience, after having
installed LightningChart® .NET SDK, Arction. WPF.SignalTools.Audiolnput can also be found from
Visual Studio’s toolbox so it can be dropped to a window, user control etc. and then moved in the
XAML code to wherever it is needed. Necessary XML namespace will be added automatically this
way.

There is also a ready-made GUI for Audiolnput. It can be found in Arction. WPF.SignalTools.GUI
namespace. Visual Studio’s toolbox also has it after LightningChart® .NET SDK has been installed.
Note that this is just a GUI for Arction.WPF.SignalTools.Audiolnput class but it contains an instance
of Arction.WPF.SignalTools.Audiolnput class which can bew accessed Input property. In other
words, there is no need to create a new separate Arction.WPF.SignalTools.Audiolnput instance.

It is recommended to set LicenseKey property so that the Audiolnput instance uses an explicit
license key instead of trying to find one from Windows’ registry. When using a trial version/license,
LicenseKey property can be left to its default value.

Copyright LightningChart Ltd 2009-2023 367

22. AudioOutput component

Demo examples: SignalReader -> speakers; SignalGenerator -> speakers

AudioOutput component allows user to convert System.Double signal data into an audio stream which
is then played back through speakers or sent to Line-out connector of sound device.

22.1 Properties

Balance — Gets or sets audio playback balance. Valid values are between -100 to 100. -100 means that
audio is played only through the left speaker. 0 means that both speakers output audio. 100 means
that audio is played only through the right speaker.

BitsPerSample — Gets or sets how many bits are allocated per sample. Supported values are 8 and 16. If
any other value is used, 16 is used instead. It can be set when IsOutputEnabled is false.

IsOutputEnabled — Gets or sets the state of this instance (i.e. starts or stops it). Setting this property
true is the same as calling Start method where false is the same as calling Stop method.

IsStereo — Gets or sets whether to use two channels (stereo) or just one (mono). It can be set when
IsOutputEnabled is false.

LicenseKey — Gets or sets license key string in normal or encrypted format.

PlaybackDevice — Gets or sets the current playback device. Can be set when IsOutputEnabled is false.
By setting this property null, Windows' default playback device is used.

SamplesPerSecond — Gets or sets sampling frequency. Can be set when IsOutputEnabled is false.

Volume — Gets or sets volume (0-100). Can be set when IsOutputEnabled is false.

368 LightningChart® .NET User’s Manual, rev. 10.5

23. SpectrumcCalculator component

Demo examples: Waveform and spectrum

SpectrumCalculator component allows conversion between time domain and frequency domain.

|
|\

| :
I\ — Signal data

L N T I R TN
F f |Ia| lh'l I i ‘lfl Iﬁ'l F f |Ia| ||H.' I i |I|'| i
¥ ||, ¥ I ¥ |J ¥ I ¥ IJ ¥ I ¥ |ﬂ ¥]
R S B R R R IR,

00:00.2 00:00.2 00:00.4 00:00.5 00:00.6 00:00.7 00:00.8 00:00.9 00:01.0
Time

1 1

|
|Pi|"|ﬁ|I

1400 5
1200
1000
800 -
500 -
400

Figure 23-1. Example of source signal data (top) converted to frequency domain (bottom). Signal sampling frequency = 300
Hz, thus frequency scale is 300/2 = 150 Hz. The strong sine base line is 10 Hz (10 cycles / sec). Smaller signal of 100 Hz is added
as noise. Both spikes are found in the power spectrum.

The following public methods are available:

e CalculateForward(double[] samples, out double[] fftData) - Converts time domain signal data to
frequency domain by using FFT. Output fftData contains also negative values. Input and output data
arrays must be of equal length. The length is the resolution of the data, spreading from 0 Hz to
sampling frequency / 2 with equal frequency interval between output values.

e CalculateForward(float[] samples, out float[] fftData) — Similar to the previous method, but for
single accuracy floating point values.

Copyright LightningChart Ltd 2009-2023 369

CalculateBackward(double[] fftData, out double[] samples) - Converts frequency domain data to
time domain. Makes signal samples from FFT data. Sample count equals input fftData length.
CalculateBackward(float[] fftData, out float[] samples) — Similar to the previous method, but for
single accuracy floating point values.

PowerSpectrum(double[] samples, out double[] fftData) - Calculates power spectrum of signal
data. Is the same as CalculateForward, but with absolute output values.

PowerSpectrum(float[] samples, out float[] fftData) — Similar to the previous method, but for single
accuracy floating point values.

PowerSpectrumOverlapped(double[] samples, int fftWindowLength, double overlapPercent, out
double[] fftData, out int processedSampleCount) - Calculates the power spectrum by shifting the
calculation windows inside source signal samples data, by overlap percent. Signal data must be
longer than given FFT window length. The output FFT data is the length of fftWindowLength which
is not necessarily the same as the length of the source data. The output data has absolute values.

370

LightningChart® .NET User’s Manual, rev. 10.5

24. Signal filters

Signal Processing class has built-in digital signal filters. They are designed to filter out unwanted
frequencies from the acquired signal data. There are two types of filters. Finite Impulse Response (FIR)
filters are amplitude stable, constant phase shift filters, which cause a constant lag in the data. The higher
the factor count (taps), the longer the delay. Infinite Impulse Response (IIR) filters are minimal-lag filters,
but introduce phase shift depending on the input frequency, and are unstable if designed poorly.

SignalProcessing namespace must be used in order to utilize signal filters. This allows creating FIRFilter

and lIRFilter objects. To filter the data, call FilterData(rawData, out filteredData) method of either of the
objects to use the respective filter.

using Arction.Wpf.SignalProcessing;

// Creating a FIR filter and filtersamples with it.
FIRFilter firFilter = new FIRFilter();

double[] filteredSamples;

_firFilter.FilterData (rawData, out filteredSamples);

The filter classes have several methods regarding their behaviour. SetFactor() for both filters and
SetABFactors() for IR filters can be used to modify the factors controlling for instance the data lag and

unstable output limits. GetDelay() gets the current data lag while Reset() resets the internal delay and
filtering buffers.

Spectrum

'
0 UL
\H‘!‘u

J

Filtered signal (mV)

=

‘ss 0,50 -0,45 -0,40 -0,35 -0,30 -0,25 -0,20 -0,15 -0,10 -0,05 0,0C
Time (s}

Figure 24-1. Raw, unfiltered signal on the top, filtered signal on the bottom.

Copyright LightningChart Ltd 2009-2023 371

372 LightningChart® .NET User’s Manual, rev. 10.5

25. Headless mode

Headless mode is a software capability of working on a device without access to Graphical User Interface
(GUI). The term "headless" is also used when software does not require the presence of peripheral
devices (like display, keyboard, mouse) or access to them. The absence of peripherals does not cause the
failure of initialization or execution processes. However, in this case the software may receive inputs and
provide output via other communication interfaces, for example via network or a serial port.

25.1.1 Headless Rendering

Headless configuration allows running LightningChart in a headless/server environment. Expected
scenarios include background rendering in software applications without User Interface (Ul) and
generation of a bitmap image from the chart content. The image then can be passed to the headful
system for further rendering.

Basic usage:

var chart = new LightningChart (new RenderingSettings ()

{

HeadlessMode = true

)i

Headless mode can be activated by setting HeadlessMode flag to true. The property can be accessed
via chart.ChartRenderOptions (for WPF) or chart.RenderOptions (for WinForms). LightningChart
automatically detects its usage in the Windows Service type application, thus there is no need to
specify the mode.

25.1.1.1 Additional initialization options

The initialized instance of LightningChart with a missing Ul and visual parent will not receive any
rendering requests, like sizing the layout or when to render a frame. Furthermore, WPF chart uses
these signals to initialize a rendering engine, when WinForms does engine initialization during the
creation time. Thus, the following operations and configurations must be applied to the chart by the
user:

- Define size using chart.Width and chart.Height properties.

- Request rendering engine initialization by calling chart.InitializeRenderingDevice(true)
(only for WPF).

- Subscribe to chart.AfterRendering event for implementing the logic of exporting the images.

The chart still reacts to property changes. The rendering of a new frame can be queried by
consecutive BeginUpdate() and EndUpdate() call, if it is needed.

Copyright LightningChart Ltd 2009-2023 373

25.1.1.2 Capturing images
The rendered frame can be exported (see chapter 14) in various ways:

e OutputStream property

e SaveToStream method

e CopyToClipboard method
e CaptureToByArray method
e SaveToFile method

In general, bitmap stream is preferred. Also, ViewXY chart supports EMF, WMF, SVG in headless
mode in SaveToStream and SaveToFile methods.

Web page

Windows Service

Initialization
. . © Continuous
LightningChart instance(s :
in headless mode Image stream Desktop /

mobile app

Update data

New frame

~_

Figure 25-1. Diagram of example usages.

374 LightningChart® .NET User’s Manual, rev. 10.5

25.1.2 Limitations and Requirements

25.1.2.1 Threads

Headless configuration allows using LightningChart for a background work without placing it inside a
visual parent and without access to the chart from the foreground thread (GUI thread). During the
creation of the LightningChart instance, the properties of a chart must be updated within the same
thread that has created the chart.

e The COM threading model, called “apartment”, must be STA (Single Thread Apartment), not
MTA (Multi Thread Apartment). For an ordinary Ul application, STA is the default model,
whereas MTA state is default for Windows Services.

e All access, i.e. update, creation and disposing, must be made via that thread. Ul must be
touched only from GUI thread. Thus, if there are interaction operations required, they should
be moved from chart’s thread to GUI thread. Note! LightningChart can be run on GUI thread.

e The thread must have a valid and active message queue pump. For example, run
Application.Run on the thread.

25.1.2.2 Chart Update

LightningChart uses a single buffer on rendering, thus exporting of a new image will be handled after
the exporting of the previous image is finished. The synchronous configuration
(ChartUpdateType.Sync) provides a rendering of an image straight after receiving a request to
update the properties of a chart. Sync mode should be enabled for the headless mode to enable
faster and uninterrupted performance.

25.1.2.3 Engine support

Both DirectX 9 & 11 engines work in headless mode. However, only DirectX 11 can be used in
Windows Services type applications due to the limitations of MS DirectX.

25.1.2.4 Licensing

By default, Windows Service executes in the security context of a system user account. Installation
of a trial and development license is impossible. For this reason, the service application must
contain a valid Deployment Key or be running with credentials of a normal user with an active license
(trial / development).

Copyright LightningChart Ltd 2009-2023 375

25.1.3 Example solution

LightningChart SDK comes with an example Visual Studio solution (DemoService.sIn) containing:

e Service
e Console application
e C(Client application for WPF

DemoService.sln can be found in C:\ProgramData\Arction\LightningChart .NET SDK
v.10\DemoService folder.

When starting up the WPF client, it shows a frame container in the middle of the window.

% Headless LightningChart

Connect

-

New Frame

% Headless LightningChart

. LightningChartUltimate

Console Log

E2=

Disconnect

Generate Data d to the headful
m for further rendering.

% Headless LightningChart

. = = Example Usage
LightningChartUltimate

Generate Data
for further rendering.

I
Ax 20 Example Usage

T
1000

New Frame

. > Documentation Links
e . - User Manu:

Console Log

® " s

e with m

je with m

Figure 25-2. WPF client app. After Start, Connect and Generate Data, it shows continuously updating image stream.

376 LightningChart® .NET User’s Manual, rev. 10.5

Server / Cloud

Response Package(-s) Response Package(-s)

Request Package

Request Package

Request Package

<]

GUI Thread

—
Pipe
f—

Response Package(-s)

Background Thread

Figure 25-3. Headless demo service — client internal operation of messages with named pipes and background thread
illustrated.

Copyright LightningChart Ltd 2009-2023 377

26. Using Windows Forms chart in WPF application

LightningChart has 3 WPF API’s available. Consider using WinForms chart APl in WPF application only
in special cases.

26.1 How about using LightningChart Windows Forms controls in WPF?

In WPF, Windows Forms components can be used by adding
Arction.WinForms.Charting.LightningChart.dll and Arction.WinForms.SignalProcessing.SignalTools.dll
as reference to the project, and creating them by code. LightningChart control and most of other
controls have a built-in Ul. Use WindowsFormsHost as parent container to these. These controls can be
used also without Ul, with their methods and properties.

26.2 Should I use Arction.WinForms.LightningChart in WPF?

Using WPF chart assemblies is recommended over WinForms chart in WPF applications, because it
doesn’t need the WindowsFormsHost control, and thus does not have the generic “airspace” problem of
WindowsFormsHost control. Another advantage is that the WPF chart can have transparent background
and the charts can be placed one over another.

Using WindowsFormsHost control with WinForms chart control can be considered to be used when the
absolute maximum performance is required. WindowsFormsHost + WinForms chart rendering is slightly
faster.

If the user chooses to use the WinForms chart in WPF application, it must be placed inside
WindowsFormsHost control. Add a WindowsFormsHost control (found in the Visual Studio WPF
Toolbox) into the WPF form.

378 LightningChart® .NET User’s Manual, rev. 10.5

d 525 A 151

Sampling frequency (Hz)

1000
X axis length (s)
10
Scroll mode
Sweeping hd

Channel count

Start

Figure 26-1. WPF application in designer. WindowsFormsHost control keeps the LightningChart object inside when the
application is executed.

Create a LightningChart object and place it inside the WinFormsHost object in code. Open the form
xaml.cs file and create the chart in the form constructor:

public WindowMain ()
{

InitializeComponent () ;

CreateChart () ;
}

private LightningChart m chart = null;

void CreateChart ()

{
m_chart = new LightningChart();

//Set the chart object as child to the WindowsFormsHost control
windowsFormsHostl.Child = m_chart;

Copyright LightningChart Ltd 2009-2023 379

me“mm
ot L —

]
¥ s ey]
]
Sorodl e
Smeang |

Figure 26-2. WinForms chart in a WPF application.

380 LightningChart® .NET User’s Manual, rev. 10.5

27. Using LightningChart in C++ applications

LightningChart is a .NET library which can be most fluently used with C# and VB.NET language.
However, it is possible to use LightningChart in C++ Win32 applications as well, including MFC
applications. The application using LightningChart must be compiled with Common Language Runtime
Support (/clr) option. When creating a Windows Form Project using C++, refer to the detailed step by
step tutorial below.

27.1 Install required C++/CLR packages

Make sure your Visual Studio have installed C++ package with C++/CLR. For example, run Visual Studio
(2017) Installer, and select update/modify button. From Individual components select C++/CLI support.
From Workloads select Desktop development with C++.

Modifying — visual Studio Professional 2017 — 15.7.3

Workloads Individual compaonents Language packs Installation locations

Windows (3) Summary

> Visual Studio core editor
> Universal Windows Platform development %
> .NET desktop development *
» Desktop development with C++ #*
v Individual components
NET Framework 4.6.1 SDK

Build Windows desktop applications using the Microsoft R NET Fromework 461 targeting pack

C++ toolset, ATL, or MFC. C++/CLI suppart

R Tpeschipt 2.

MMl Universal Windows Platform development NET desktop development
MM Creste applications for the Universal Windows Platform Build WPF, Windows Forms, and consle applications using
with C#, VB, JavaSeript, or optionally C++. C#, Visual Basic, and F.

#+— Desktop development with C++

Web & Cloud (7)

@ ASPINET and web development 1A Azure development

Build web applications using ASP.NET, ASP.NET Core, Azure SDKs, toals, and prajects for developing cloud apps,
HTML/JavaScript, and Containers including Dacker support. <reating resources, and building Containers including...

Python development) Nodejs development
Editing, debugging, interactive development and source Build scalable network applications using Nodejs, an
control for Python. ssynchronous event-driven JavaScript runtime.

Location
C:\Program Files (x88)\Microsoft Visual Studio\2017\Professional Change...
Total space required 14.49 GB

By continuing, you agree to the license for the Visual Studio edition you selected. We also offer the ability to download cther software with Visual Studic. This software is
licensed separately, as set out in the 3rd Party Notices or in its accompanying license. By continuing, you also agree to those licenses.

Modify

Figure 27-1. Visual Studio Installer selections for C++ project.

Copyright LightningChart Ltd 2009-2023 381

27.2 Setting Visual Studio project

Open Visual Studio and create a new project. If all the required packages and components described

above are installed, the following selection is available when creating new project (Templates -> Visual
C++ -> CLR -> CLR Empty project).

Mew Project 7

X
T = Sort by: [Default M Search (Ctrl+E) P~
4 |nstalled ey o
T | Class Library Visual C++ Type: Visual C++

b Visual C#) T An empty project for creating an empty

b Visual Basic h CLR Console Application Visual C++ CLR application

4 Visual C++ ——

Windows Desktop Wl CLR Empty Project Visual C++

Windows Universal

General

CLR

ATL v
Mot finding what you are locking for?

Open Visual Studio Installer

Name: Project1

Location: |D:\WindowsFormC++\ - | Browse...

Solution name: Project1 Create directory for solution
Framework: | NET Framework 4 - [Add to Source Control

Figure 27-2. Windows Forms C++ project template.

Right click the created project and choose Properties option. Modify Configuration Properties -> Linker
-> System -> SubSystem and Linker -> Advanced -> Entry point as show in the figure 26-3.

382 LightningChart® .NET User’s Manual, rev. 10.5

Project2 Property Pages ? X Project2 Property Pages ? X
Configuration: |Active(Debug) | Platform: | Active(Win3:z ~ Configuration Manager... Configuration: |Active(Debug) ~ | Platform: |Active(Win3z ~ Configuration Manager...
> Common Properties ~ Windows (/SUBSYSTEM:WINDOWS) |~ > Common Properties ~ Entry Point Main >
4 Configuration Properties Minimum Re 4 Configuration Properties No Entry Point No
General Heap Resen General Set Checksum No
Debugging Heap Comm Debugging Base Address
VC++ Directories Stack Resery VC++ Directories Randomized Base Addi Yes (/DYNAMICBASE)
P Qs Stack Comm P Qs Fixed Base Address No (/FIXED:NO)
4 Linker Enable Larg: 4 Linker Data Execution Prevent Yes (/NXCOMPAT)
Cauzal Terminal Se1 ete Turn Off Assembly Geni No
oy) Swap Run Fr No InpuT . Unload delay loaded D
Mamfestr Az Swap Run Fr No Mamfe# Iz Nobind delay loaded C
Debugging Driver Not Set Debugging Import Library
System System .
o P Merge Sections
Optimization Optimization Target Machine MachineX86 (/MACHINEX86)
Embedded IDL Embedded IDL)
Windows Metadata Windows Metadata profile Mo
PetErT] e CLR Thread Attribute
All Options All Options CLR Image Type Default image type
Command Line Command Line Key File
[> Manifest Tool [> Manifest Tool Key Container &
I> Librarian SubSystem > Librarian Entry Point
ND [’\Efurces ~ | | The /SUBSYSTEM option tells the operating system how t... D [’\-elfurces ¥ | | The /ENTRY option specifies an entry point function as th
< > < >
Cancel Apply Cancel Apply

Figure 27-3. C++ project property pages.

Add Windows Form Item to the project: right click the project and choose Add -> New Item... Select
Windows Form as shown in the figure 26-4. It is possible to get an error message: The data necessary to
complete this operation is not yet available. (Exception from HRESULT: 0x8000000A). This can be ignored, just
close it and proceed to the next step.

Add Mew Item - Project1 ? X
4 Installed Sort by: | Default -] i Search (Ctrl+E) P~
4 Visual C++ Windows Form Visual C++ Type: Visual C++
Code Creates a CLR form containing other
ul :;—_l CLR User Control Visual C++ Windows controls
Data
Resource
Web
Utility
Property Sheets
Test
HLSL
Graphics
b Online
Name: MyForm.h
Location; |D:\WindowsFormC++\Project1\Project1\ > Browse...

Figure 27-4. Add new Windows Forms item in C++ project.

Copyright LightningChart Ltd 2009-2023 383

Add the following code to the created form (in this example MyForm.cpp), save it and close the Visual

Studio

#include "MyForm.h"

using namespace System;
using namespace System::Windows::Forms;

[STAThreadAttribute]
void Main(array<String~>»» args) {

Application::EnableVisualStyles();

Application::SetCompatibleTextRenderingDefault(false);
Projectl::MyForm form;
Application: :Run(%form);

The project is ready to be built for the first time. Reopen the project and select Build -> Rebuild
Solution. When the project is running, an empty Windows Form should be seen.

27.3 Creating LightningChart application in C++ project

Components can now be added to the form by editing MyForm.h file. Below is a simple example how
to create a chart with PointlLineSeries in it. Include LightningChart’s WinForms DLL in references list and

add relevant namespaces in MyForm.h code file.

;'QJ Project1 - Microsoft Visual Studio

File Edit

xoqjoo) i2i01dx3 Janes [

MyFormh + X
%] Project1

Project Build Debug Team Tools Test Apalyze Window
B2 H.J"‘ - ~ | Debug ~ x86 ~ P Local Windows Debugger ~

~ | *3 Project1:MyForm - | @ CreateChart()

#pragma once

—namespace Projectl {

using namespace System;
using namespace System::ComponentMadel;
using namespace System::Collections;

using namespace System::Windows::Forms;
using namespace System::Data;

using namespace Arction::WinForms::Charting;
using namespace Arction::WinForms::Charting: :Axes;

using namespace Arction::WinForms::Charting::SeriesXY;

1
/// Summary for MyForm
/11

public ref class MyForm : public System::Windows::Forms::Form

{
public:
MyForm(void)

InitializeComponent();
"
//TODO: Add the constructor code here
"
CreateChart();
H

protected:

Y & Quicklaunch (Ctrl+Q) P - B X
Sign in B
L) ‘ == | n =

@E-lo-58@ o f=
Search Solution Explorer (Ctrl+7) P -

gqﬂ Solution ‘Project?’ (1 project)
4 % Projectt

PR N

I =8 Arction.WinForms.Charting.LightningChartUltimar

= oD,

=8 System
=8 System.Data
=8 System.Drawing
=8 System.Windows.Forms
=B SystemXml
P % External Dependencies
4 .| Header Files
4 MyForm.h
@ MyForm.resx
b {)} Projectl
+ Resource Files
4 .. Source Files
b *+ MyForm.cpp

Team Explorer

A Add to Source Control =

Figure 27-5. Include Arction.WinForms.Charting.LightningChart.dll in references list and add relevant namespaces in the

project.

384

LightningChart® .NET User’s Manual, rev. 10.5

Declare a ‘chart’ variable and set its properties. Below is an example of a chart creation method.

protected:
LightningChart ~ _chart;

void CreateChart()

{
_chart = gcnew LightningChart();
//Disable repaints for every property change
_chart->BeginUpdate();
//Set parent window by window handle
_chart->Parent = this;
//Fill the form area
_chart->Dock = DockStyle::Fill;
_chart->ActiveView = ActiveView: :ViewXY;
// Configure x-axis.
AxisX” axisX = _chart->ViewXY->XAxes[0];
axisX->SetRange(9, 20);
axisX->ScrollMode = XAxisScrollMode: :None;
axisX->ValueType = AxisValueType::Number;
// Configure y-axis.
AxisY” axisY = _chart->ViewXY->YAxes[0];
axisY->SetRange(9, 100);
PointLineSeries”™ plsl = gcnew PointLineSeries(_chart->ViewXY, axisX, axisY);
plsl->LineStyle->Color = Color::Yellow;
plsl->Title->Text = "New Title";
plsl->PointsVisible = true;
plsl->LineVisible = true;
_chart->ViewXY->PointLineSeries->Add(plsl);
// Generate random data.
Random rand;
int pointCount = 21;
array<SeriesPoint> ~ points = gcnew array<SeriesPoint>(pointCount);
for (int point = @; point < pointCount; point++)
{

points[point].X = (double)point;
points[point].Y = 100.0 * rand.NextDouble();

}
plsl->Points = points;
// Allow chart rendering.
_chart->EndUpdate();

}

The resulting application when compiled and executed:

Copyright LightningChart Ltd 2009-2023 385

gy’ MyForm

L
e
—
'U')
X
4y
>_

| ! ! ! ¥ | ! ' y o
10 15 20
X axis title M- - New Title

Figure 27-6. Example application executed.

386 LightningChart® .NET User’s Manual, rev. 10.5

28. Dispose pattern

28.1 Chart disposing

When a chart has been created in code, and is no longer needed, chart.Dispose() should be called. It
frees the chart and all its objects, such as series, markers and palette steps from the memory.

28.2 Disposing objects

If objects are created on the fly, and then the memory used by them needs to be freed before exiting the
application or disposing the whole chart with chart.Dispose(), remove the object from the collection it
has been added to, and then call Dispose() for the object.

For example, disposing a series from chart.ViewXY.PointLineSeries collection:
//Do cleanup... Remove and dispose 3 series
_chart.BeginUpdate();

List<PointLineSeries> listSeriesToBeRemoved = new List<PointLineSeries>();
listSeriesToBeRemoved.Add(_chart.ViewXY.PointLineSeries[1]);
listSeriesToBeRemoved.Add(_chart.ViewXY.PointLineSeries[3]);
listSeriesToBeRemoved.Add(_chart.ViewXY.PointLineSeries[4]);

foreach (PointLineSeries pls in listSeriesToBeRemoved)

{

_chart.ViewXY.PointLineSeries.Remove(pls);
pls.Dispose();

}

_chart.EndUpdate();

When LightingChart's objects are no longer needed, it is a good practice to dispose them to prevent
memory leaking.

LightningChart’s collections also have specific methods for correctly disposing unused objects. Instead of
calling generic list.Clear() method (e.g. ViewXY.SampleDataSeries.Clear()), RemoveAndDispose can be
used. For example, to remove all SampleDataSeries:

while (_chart.ViewXY.SampleDataSeries.Count > @)
{

}

_chart.ViewXY.SampleDataSeries.RemoveAndDispose<SampleDataSeries>(0);

Copyright LightningChart Ltd 2009-2023 387

29. Object model notes

29.1 Sharing objects between other objects

LightningChart object model is tree-based. Every class has its parent object and a list of child objects. This
tree-model allows child object to notify the parent object of its changes, allowing the parent to respond
to it. Respectively, the parent notifies its parent and so on until the root node, LightningChart itself, is
reached, which then knows how to refresh accordingly.

Chart takes ownership of all the objects given to it and will dispose the objects when it no longer
needs them. This includes situations where a new object replacing an old one is given to chart, and the
parent of the object is disposed. User must be aware of this, as otherwise it is possible to end up using
disposed objects.

If an object is shared between another .NET component and LightningChart, and LightningChart
disposes the object, the .NET component is left with a disposed object. LightningChart cannot detect
parent sharing between LightningChart and other components.

Sharing objects between other objects in the same chart, or other chart instances, is not allowed.

Example 1 of wrong usage:

AnnotationXY annotationl = new AnnotationXY();
chart.ViewXY.Annotations.Add(annotationl);

AnnotationXY annotation2 = new AnnotationXY();
annotation2.Fill = annotationl.Fill;
chart.ViewXY.Annotations.Add(annotation2);

Issue: The same Fill object cannot be shared between multiple objects.
Correct way: Only copy properties if they are of ValueType (e.g. Integer, Double, Color)

388 LightningChart® .NET User’s Manual, rev. 10.5

Example 2 of wrong usage:

SeriesEventMarker marker = new SeriesEventMarker();

chart.ViewXY.PointLineSeries[0].SeriesEventMarkers.Add(marker);
chart.ViewXY.PointLineSeries[1].SeriesEventMarkers.Add(marker);

Issue: The same object shouldn't be added to a collection of multiple collections.
Correct way: Create several markers, one for each series.

Remember to subscribe to ChartMessage event handler. In most cases it reports errors of invalid object
sharing cases (see chapter 16).

Copyright LightningChart Ltd 2009-2023 389

30. Deployment / distribution of LightningChart assemblies

30.1 Referenced assemblies

Deliver LightningChart .dll -files with the executable folder, next to the executable folder, with Global
assembly cache, or with another folder where .NET assembly resolving system can find them.
LightningChart also supports ClickOnce deployment.

WinForms:

e Arction.WinForms.Charting.LightningChart.dll
e Arction.Licensing.dll

e Arction.DirectX.dll

e Arction.RenderingDefinitions.dll

e Arction.RenderingEngine.dll

e Arction.RenderingEngine9.dll

e Arction.RenderingEnginel1.dll

e Arction.DirectXInit.dll

e Arction.DirectXFiles.dll

If using SignalTools

Arction.WinForms.SignalProcessing.SignalTools.dll
Arction.MathCore.dll

WPF:

e Arction.Wpf.Charting.LightningChart.dll (for Non-bindable WPF chart)

e Arction.Wpf.ChartingMVVM.LightningChart.dll (for Bindable WPF chart)
e Arction.Licensing.dll

e Arction.DirectX.dll

e Arction.RenderingDefinitions.dll

e Arction.RenderingEngine.dll

e Arction.RenderingEngine9.dll

e Arction.RenderingEnginel1.dll

e Arction.DirectXInit.dll

e Arction.DirectXFiles.dll

If using SignalTools
e Arction.Wpf.SignalProcessing.SignalTools.dll
e Arction.MathCore.dll

390 LightningChart® .NET User’s Manual, rev. 10.5

UWP:

e Arction.Uwp.ChartingMVVM.LightningChart.dll
e Arction.Uwp.RenderingDefinitions.dll
e Arction.Uwp.RenderingEngine.dll

e Arction.Uwp.RenderingEngineBase.dll
e Arction.Uwp.Licensing.dll

o SharpDX.D3DCompiler.dll

e SharpDX.Direct2D1.dll

e SharpDX.Direct3D11.dll

e SharpDX.dll

e SharpDX.DXGI.dII

e SharpDX.Mathematics.dll

o UwpAttributes.dll

30.2 License key

Remember to use static SetDeploymentKey method for all components. Otherwise the chart enters in
trial mode and works only for 30 days, with a trial nag on it. For making a DeploymentKey and detailed
license keys management, see chapter 4.

30.3 Obfuscating application code

It is mandatory to obfuscate the application code, so that LightningChart license keys are not visible to
.NET disassembler tools. Leaking license keys may lead into license termination, legal actions and claim
of damage.

30.4 Obfuscating LightningChart code

A LightningChart source code subscriber gets access to the source code of LightningChart libraries. It is
mandatory to obfuscate the assemblies build from LightningChart source code, to prevent
LightningChart Ltd’s intellectual property rights and code from leaking. Distributing unobfuscated
LightningChart libraries is a violation of EULA, and may lead into license termination, legal actions and
claim of damage.

Copyright LightningChart Ltd 2009-2023 391

30.5 XML files of LightningChart assemblies

Deployment of these XML files is forbidden.

e Arction.WinForms.Charting.LightningChart.xml

e Arction.Wpf.BindableCharting.LightningChart.xml
o Arction.Wpf.Charting.LightningChart.xml

e Arction.Wpf.ChartingMVVM.LightningChart.xml|

e Arction.Wpf.SignalProcessing.SignalTools.xml

e Arction.WinForms.SignalProcessing.SignalTools.xml

The files provided by LightningChart Ltd. are only for helping with the application development. They
are used mainly to show code parameters and property tips. When rebuilding LightningChart
assemblies from source code, ensure the XML files mentioned above are not deployed. Distributing
them is strictly forbidden, as they will reveal too much info for .NET disassembler and reverse-
engineering applications.

392 LightningChart® .NET User’s Manual, rev. 10.5

31. Troubleshooting

31.1 Updating from older version

LightningChart components APl may have been changed from an older version, after which the project
may not load or use the new version automatically. These instructions show how to set the new version
assemblies as a reference to a project and how to fix the properties that were unable to de-serialize in
the Visual Studio form editor.

In order to update chart, the reference to the old version has to be removed and a reference to the new
version added. In some cases *.Designer.cs and *.resx files may need to be fixed as they may contain
properties, which are binary incompatible.

Removing the old reference from project References

1. Go to Solution Explorer.

2. Open References folder.

3. Select LightningChart assemblies and remove them by pressing Delete button or right-click and select
Remove.

Adding a reference to a new version

1. Go to Solution Explorer.

2. Open References folder.

3. Add reference to new chart. Right-click on References folder. Select Add Reference... and select the
new LightningChart DLL file.

As the APl may have been changed, the source code on changed properties may have to be fixed.

If a chart is totally incompatible (i.e. Visual Studio can't load Ul on form editor), LightningChart property
setters have to be removed from *.Designer.cs and *.resx files.

Removing property setters from *.Designer.cs file

1. Open *.Designer.cs file in text editor (use other editor than Visual Studio if possible).

2. Locate and delete rows containing setters for LightningChart. For example:
this.m_chart.Background =
((Arction.LightningChart.Fill)(resources.GetObject("m_chart.Background")));

There is no need to remove inherited properties, like Location and Size. Remove properties, which are

read from resource by a method like above "NN = ((...)(resources.GetObject("...")));".

Copyright LightningChart Ltd 2009-2023 393

Removing serialized items from *.resx file

1. Open *.resx file in text editor.

2. Find xml tags containing LightningChart objects (they are identified with chart member name. e.g.
"m_chart" or "LightningChart1").

3. Remove the lines including <data> tag to the end of xml object (</data> tag).
E.g. if chart background is serialized as the following xml object, all the following lines should be
removed from the *.resx file:

<data name="m chart.Background" mimetype="application/x-
microsoft.net.object.binary.base64">

<value>
AAEAAAD/////AQAAAAAAAAAMAGAAAGRBcmNOaW9uLkxpZ2h0bmluZONoYXJOVWx0aWlhd
GUsIFZlcnNp
P249NC42LJEUM]AWMSWgQ3VsdHVYyZT1uZXV0cmFsLCBQdWIsaWNLZX1Ub2t1bj03MmY1N
WZiZDY5MDFm
. lots of encoded stuff ...
YX1vdXQBAAAAB3ZhbHV1X18ACAIAAAAAAAAACH==
</value>
</data>

Note that some objects may be very large, e.g. title row count may be approximately 200 lines while
views are usually much larger (View3D has about 2000 lines).

In case of having several charts, all their serialized properties need to be removed. Editor search is
a handy tool to find the chart objects.

After the objects are removed from *.resx file and related setters from *.Designer.cs file, it should
be possible to open the project successfully in Visual Studio form editor.

31.2 Web support

See https://lightningchart.com/support-services/ for support options.

Discussion forums are available at https://lightningchart.com/forum/

31.3 Running in Virtual Machine platforms

LightningChart comes with DirectX10/11 WARP rendering for systems that don't give access to graphics
hardware. Since WARP rendering takes place in CPU, performance reduction is to be expected when
compared to hardware rendering. This needs an operating system with support for DirectX11.

For systems that don't support DirectX11, LightningChart falls back to DirectX9 Reference Rasterizer
mode. Performance is very poor, only small fraction of WARP's performance. For automatic fallback to
WARP and DirectX9, keep the RenderDevice set to Auto, AutoPreferD9 or AutoPreferD11 (chapter 5.11).

394 LightningChart® .NET User’s Manual, rev. 10.5

https://lightningchart.com/support-services/
https://lightningchart.com/forum/

32. Credits
32.1 Intel Math Kernel library

LightningChart® .NET SDK uses Intel Math Kernel Library in some parts, for example Fast Fourier

Transform methods. LightningChart assemblies contain some native DLL files built from this library.
LightningChart Ltd. is licensed to use Intel Math Kernel Library.

32.2 Open-source projects

We present thanks to the following open-source projects and material providers:

DirectX library for .NET

LightningChart uses SharpDX-derived DirectX .NET DLLs with LightningChart-made extensions,
http://www.sharpdx.org/

Map sources
LightningChart® .NET maps have been imported from the map providers as follows:
World, North America, Europe: Natural Earth, http://www.naturalearthdata.com/
Australia: Australian Bureau of Statistics, http://www.abs.gov.au/
Roads of USA: National Atlas of the United States, http://www.nationalatlas.gov

Scalable Vector Graphics output
LightningChart SVG export is using partially SvgNet project code by RiskCare Ltd.

Polynomial regression

Polynomial regression calculation code is partially based on Math.Net library,
http://www.mathdotnet.com/

The modified source code parts are available per request free-of-charge from LightningChart Support
(support@lightningchart.com).

For copyrights notices of open-source projects, see LightningChart .NET Readme.txt in LightningChart
SDK install folder.

Copyright LightningChart Ltd 2009-2023 395

http://www.sharpdx.org/
http://www.naturalearthdata.com/
http://www.abs.gov.au/
http://www.nationalatlas.gov/
http://www.mathdotnet.com/
mailto:support@lightningchart.com

